4.5 Article

WExplore: Hierarchical Exploration of High-Dimensional Spaces Using the Weighted Ensemble Algorithm

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 118, 期 13, 页码 3532-3542

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp411479c

关键词

-

资金

  1. Center for Theoretical Biological Physics (CTBP)
  2. NSF [PHY0216576]

向作者/读者索取更多资源

As most relevant motions in biomolecular systems are inaccessible to conventional molecular dynamics simulations, algorithms that enhance sampling of rare events are indispensable. Increasing interest in intrinsically disordered systems and the desire to target ensembles of protein conformations (rather than single structures) in drug development motivate the need for enhanced sampling algorithms that are not limited to two-basin problems, and can efficiently determine structural ensembles. For systems that are not well-studied, this must often be done with little or no information about the dynamics of interest. Here we present a novel strategy to determine structural ensembles that uses dynamically defined sampling regions that are organized in a hierarchical framework. It is based on the weighted ensemble algorithm, where an ensemble of copies of the system (replicas) is directed to new regions of configuration space through merging and cloning operations. The sampling hierarchy allows for a large number of regions to be defined, while using only a small number of replicas that can be balanced over multiple length scales. We demonstrate this algorithm on two model systems that are analytically solvable and examine the 10-residue peptide chignolin in explicit solvent. The latter system is analyzed using a configuration space network, and novel hydrogen bonds are found that facilitate folding.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据