4.5 Article

Hydrogen Bond Dynamics in Intrinsically Disordered Proteins

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 118, 期 11, 页码 3018-3025

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp5013544

关键词

-

资金

  1. Delhi University
  2. CSIR India

向作者/读者索取更多资源

Hydrogen bond dynamics is used to investigate the internal motions and structural plasticity of intrinsically disordered (ID) proteins. Group a represent completely disordered proteins, while group b proteins are comprised of regular secondary structures linked by flexible disordered regions. Molecular dynamics simulations of two different groups of ID proteins provide an insight into the hydrogen bond dynamics via the evaluation of the continuous and intermittent time autocorrelation functions. The intermolecular hydrogen bonds between the residues of the ID proteins and water record a short lifetime in both groups of proteins. The intermolecular hydrogen bonds relax faster at a constant rate compared to that of the intramolecular hydrogen bonds whose rate of decay fluctuate during the entire simulation trajectory. The simulations reveal that the intramolecular hydrogen bonds have a longer lifetime in group b proteins compared to those in group a proteins. The hydrophilic residues in ID proteins form stable persistent intramolecular hydrogen bonds as compared to the hydrophobic residues and help to maintain the dynamic equilibrium among the interconvertible conformations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据