4.5 Article

Condensation, Complex Coacervation, and Overcharging during DNA-Gelatin Interactions in Aqueous Solutions

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 116, 期 44, 页码 13192-13199

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp3073798

关键词

-

资金

  1. Council for Scientific and Industrial Research, India

向作者/读者索取更多资源

Interaction between DNA (effective hydrodynamic radius, R-DNA approximate to 140 nm) and Gelatin A (GA) (effective hydrodynamic radius, R-GA approximate to 55 nm) with charge ratio (DNA:GA = 16:1) and persistence length ratio (5:1) was studied by using fixed DNA concentration (5 x 10(-3) % (w/v)) and varying GA concentration (C-GA = 0-0.25% (w/v)). Experimentally, three interesting regions of interaction were observed from dynamic light scattering, turbidity, zeta potential, and viscosity data: (i) C-GA < 0.05% (w/v), GA binds to DNA forming soluble complexes of size R-complex approximate to 60 nm < R-DNA (primary binding causing condensation); (ii) 0.05% < C-GA < 0.1% (w/v), R-complex approximate to 60 to 180 nm was observed up to charge-neutralization point (secondary binding); and (iii) C-GA > 0.1% (w/v) showed interesting overcharging behavior of DNA-GA complexes, followed by liquid-liquid phase separation (complex coacervation). Aforesaid regions of interaction were further examined theoretically by modeling the problem using electrostatic and van der Waals interaction potentials treating GA molecules as counterions to DNA macroion. Region (i) was explained on the basis of electrostatic screening, followed by reduction in persistence length, which resulted in condensation of DNA-GA complex. In region (ii), the dominance of van der Waals forces led to the formation of large soluble complexes through selective binding. This was possible due to closer proximity between GA and DNA-GA complexes and the absence of strong electrostatic forces. In region (iii), these oversized and overcharged complexes coarsened, leading to complex coacervation. Here the interaction energy profile showed that a greater number of counterions was required over and above the usual charge neutralization requirement for low-energy configurations to be achieved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据