4.7 Article

Truncated conformal space approach in d dimensions: A cheap alternative to lattice field theory?

期刊

PHYSICAL REVIEW D
卷 91, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.91.025005

关键词

-

资金

  1. National Science Foundation [NSF PHY11-25915]

向作者/读者索取更多资源

We show how to perform accurate, nonperturbative and controlled calculations in quantum field theory in d dimensions. We use the truncated conformal space approach, a Hamiltonian method which exploits the conformal structure of the UV fixed point. The theory is regulated in the IR by putting it on a sphere of a large finite radius. The quantum field theory Hamiltonian is expressed as a matrix in the Hilbert space of conformal field theory states. After restricting ourselves to energies below a certain UV cutoff, an approximation to the spectrum is obtained by numerical diagonalization of the resulting finite-dimensional matrix. The cutoff dependence of the results can be computed and efficiently reduced via a renormalization procedure. We work out the details of the method for the phi(4) theory in d dimensions with d being not necessarily integer. A numerical analysis is then performed for the specific case d = 2.5, a value chosen in the range where UV divergences are absent. By going from weak to intermediate to strong coupling, we are able to observe the symmetry-preserving, symmetry-breaking, and conformal phases of the theory, and perform rough measurements of masses and critical exponents. As a byproduct of our investigations we find that both the free and the interacting theories in nonintegral d are not unitary, which however does not seem to cause much effect at low energies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据