4.7 Article

Searching for traces of Planck-scale physics with high energy neutrinos

期刊

PHYSICAL REVIEW D
卷 91, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.91.045009

关键词

-

资金

  1. John Templeton Foundation

向作者/读者索取更多资源

High-energy cosmic neutrino observations provide a sensitive test of Lorentz invariance violation (LIV), which may be a consequence of quantum gravity theories. We consider a class of nonrenormalizable, Lorentz invariance violating operators that arise in an effective field theory (EFT) description of Lorentz invariance violation in the neutrino sector inspired by Planck-scale physics and quantum gravity models. We assume a conservative generic scenario for the redshift distribution of extragalactic neutrino sources and employ Monte Carlo techniques to describe superluminal neutrino propagation, treating kinematically allowed energy losses of superluminal neutrinos caused by both vacuum pair emission (VPE) and neutrino splitting. We consider EFTs with both nonrenormalizable CPT -odd and nonrenormalizable CPT -even operator dominance. We then compare the spectra derived using our Monte Carlo calculations in both cases with the spectrum observed by IceCube in order to determine the implications of our results regarding Planck-scale physics. We find that if the dropoff in the neutrino flux above similar to 2 PeV is caused by Planck-scale physics, rather than by a limiting energy in the source emission, a potentially significant pileup effect would be produced just below the dropoff energy in the case of CPT -even operator dominance. However, such a clear dropoff effect would not be observed if the CPT -odd, CPT -violating term dominates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据