4.5 Article

Importance of Side Chains and Backbone Length in Defect Modeling of Poly(3-alkylthiophenes)

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 113, 期 18, 页码 6215-6218

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp808045j

关键词

-

资金

  1. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-06CH11357]

向作者/读者索取更多资源

Geometric defects in conjugated polymers play a critical role in determining electronic structure and properties such as charge carrier mobility and band gap. Because the relative roles of individual defects are experimentally difficult to discern, computational approaches provide valuable insight if appropriate molecular models are used. Poly(3-alkylthiophenes) are often modeled with very short backbones and without their side chains. We demonstrate the shortcomings of this approach for modeling torsional disorder in poly(3-hexylthiophene) (P3HT). Using a hybrid density functional model, we identify a minimal acceptable model to comprise approximately 10 monomers with explicitly treated alkane side chains. Potential applications of this work extend to polymer electronics and optoelectronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据