4.5 Article

Decompaction of Cationic Gemini Surfactant-Induced DNA Condensates by β-Cyclodextrin or Anionic Surfactant

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 112, 期 43, 页码 13648-13654

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp803244f

关键词

-

资金

  1. National Science Foundation of China [20633010, 20573123]

向作者/读者索取更多资源

Compaction of DNA by cationic gemini surfactant hexamethylene-1,6-bis-(dodecyldimethylammoniumbromide) (C12C6C12Br2) and the subsequent decompaction of the DNA-C12C6C12Br2 complexes by beta-cyclodextrin (beta-CD) or sodium dodecyl sulfate (SDS) have been studied by using potential and particle size measurements, atomic force microscopy (AFM), isothermal titration microcalorimetry (ITC), and circular dichroism. The results show that C12C6C12Br2 can induce the collapse of DNA into densely packed bead-like structures with smaller size in an all-or-none manner, accompanied by the increase of potential from highly negative values to highly positive values. In the decompaction of the DNA-C12C6C12Br2 complexes, beta-CD and SDS exhibit different behaviors. For beta-CD, the experimental results suggest that it can remove the outlayer hydrophobically bound C12C6C12Br2 Molecules from the DNA-C12C6C12Br2 complexes by inclusion interaction, and the excess beta-CD may attach on the complexes by forming inclusion complexes with the hydrocarbon chains of the electrostatically bound C12C6C12Br2 that cannot be removed. The increase of steric hindrance due to the attachment of beta-CD molecules results in the decompaction of the DNA condensates though the true release of DNA cannot be attained. However, for SDS, the experimental results suggest that it can realize the decompaction and release of DNA from its complexes with C12C6C12Br2 due to both ion-pairing and hydrophobic interaction between SDS and C12C6C12Br2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据