4.5 Article

Influence of lipid-soluble gating modifier toxins on sodium influx in neocortical neurons

期刊

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.108.138230

关键词

-

资金

  1. NIEHS NIH HHS [P01 ES010594, ES10594, P01 ES010594-08] Funding Source: Medline
  2. NIGMS NIH HHS [GM56677, R01 GM056677] Funding Source: Medline
  3. NINDS NIH HHS [NS053398, R01 NS053398] Funding Source: Medline

向作者/读者索取更多资源

The electrical signals of neurons are fundamentally dependent on voltage-gated sodium channels (VGSCs), which are responsible for the rising phase of the action potential. An array of naturally occurring and synthetic neurotoxins have been identified that modify the gating properties of VGSCs. Using murine neocortical neurons in primary culture, we have compared the ability of VGSC gating modifiers to evoke Na+ influx. Intracellular sodium concentration ([Na+](i)) was monitored using the Na+-sensitive fluorescent dye, sodium-binding benzofuran isophthalate. All sodium channel gating modifier compounds tested produced a rapid and concentration-dependent elevation in neuronal [Na+](i). The increment in [Na+](i) exceeded 40 mM at high concentrations of brevetoxins, batrachotoxin, and the novel lipopeptide, antillatoxin. The maximal increments in neuronal [Na+](i) produced by neurotoxin site 2 alkaloids, veratridine and aconitine, and the pyrethroid deltamethrin were somewhat lower with maximal [Na+](i) increments of less than 40 mM. The rank order of efficacy of sodium channel gating modifiers was brevetoxin (PbTx)-1 > PbTx-desoxydioxolane > batrachotoxin > antillatoxin > PbTx-2 = PbTx-3 > PbTx3 alpha-naphthoate > veratridine > deltamethrin > aconitine > gambierol. These data demonstrate that the ability of sodium channel gating modifiers to act as partial agonists is shared by compounds acting at both neurotoxin sites 2 and 5. The concentration-dependent increases in [Na+](i) produced by PbTx-2, antillatoxin, veratridine, deltamethrin, aconitine, and gambierol were all abrogated by tetrodotoxin, indicating that VGSCs represent the sole pathway of Na+ entry after exposure to gating modifier neurotoxins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据