4.7 Article

Impact of elevated CO2 and N addition on bacteria, fungi, and archaea in a marsh ecosystem with various types of plants

期刊

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
卷 99, 期 12, 页码 5295-5305

出版社

SPRINGER
DOI: 10.1007/s00253-015-6385-8

关键词

Elevated CO2; N deposition; Bacteria; Fungi; Archaea; Community composition; Wetland

资金

  1. NRF [2011-0030040]
  2. National Research Foundation of Korea [2009-0092795, 2011-0030040] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

The individual effects of either elevated CO2 or N deposition on soil microbial communities have been widely studied, but limited information is available regarding the responses of the bacteria, fungi, and archaea communities to both elevated CO2 and N in wetland ecosystems with different types of plants. Using a terminal restriction fragment length polymorphism (T-RFLP) analysis and real-time quantitative PCR (RT-Q-PCR), we compared communities of bacteria, fungi, and archaea in a marsh microcosm with one of seven macrophytes, Typha latifolia, Phragmites japonica, Miscanthus sacchariflorus, Scirpus lacustris, Juncus effusus, Phragmites australis, or Zizania latifolia, after exposing them to eCO(2) and/or amended N for 110 days. Overall, our results showed that the elevated CO2 and N may affect the bacterial and archaeal communities, while they may not affect the fungal community in terms of both diversity and abundance. The effects of elevated CO2 and N on microbial community vary depending on the plant types, and each microbial community shows different responses to the elevated CO2 and N. In particular, elevated CO2 might force a shift in the archaeal community irrespective of the plant type, and the effect of elevated CO2 was enhanced when combined with the N effect. This study indicates that elevated CO2 and N addition could lead to changes in the community structures of bacteria and archaea. Our results also suggest that the fungal group is less sensitive to external changes, while the bacterial and archaeal groups are more sensitive to them. Finally, the characteristics of the plant type and relevant physicochemical factors induced by the elevated CO2 and N may be important key factors structuring the microbial community's response to environmental change, which implies the need for a more comprehensive approach to understanding the pattern of the wetland response to climate change.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据