4.6 Article

Time-dependent stochastic Bethe-Salpeter approach

期刊

PHYSICAL REVIEW B
卷 91, 期 23, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.91.235302

关键词

-

资金

  1. Israel Science Foundation-FIRST Program [1700/14]
  2. National Science Foundation (NSF) [CHE-1112500]
  3. Direct For Mathematical & Physical Scien [1112500] Funding Source: National Science Foundation
  4. Division Of Chemistry [1112500] Funding Source: National Science Foundation

向作者/读者索取更多资源

A time-dependent formulation for electron-hole excitations in extended finite systems, based on the Bethe-Salpeter equation (BSE), is developed using a stochastic wave function approach. The time-dependent formulation builds on the connection between time-dependent Hartree-Fock (TDHF) theory and the configuration-interaction with single substitution (CIS) method. This results in a time-dependent Schrodinger-like equation for the quasiparticle orbital dynamics based on an effective Hamiltonian containing direct Hartree and screened exchange terms, where screening is described within the random-phase approximation (RPA). To solve for the optical-absorption spectrum, we develop a stochastic formulation in which the quasiparticle orbitals are replaced by stochastic orbitals to evaluate the direct and exchange terms in the Hamiltonian as well as the RPA screening. This leads to an overall quadratic scaling, a significant improvement over the equivalent symplectic eigenvalue representation of the BSE. Application of the time-dependent stochastic BSE (TDsBSE) approach to silicon and CdSe nanocrystals up to size of approximate to 3000 electrons is presented and discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据