4.6 Article

Eigenstate thermalization hypothesis and integrability in quantum spin chains

期刊

PHYSICAL REVIEW B
卷 91, 期 15, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.91.155123

关键词

-

资金

  1. ERC [279391 EDEQS]

向作者/读者索取更多资源

We investigate the eigenstate thermalization hypothesis (ETH) in integrable models, focusing on the spin-1/2 isotropic Heisenberg (XXX) chain. We provide numerical evidence that the ETH holds for typical eigenstates (weak ETH scenario). Specifically, using a numerical implementation of state-of-the-art Bethe ansatz results, we study the finite-size scaling of the eigenstate-to-eigenstate fluctuations of the reduced density matrix. We find that fluctuations are normally distributed, and their standard deviation decays in the thermodynamic limit as L-1/2, with L the size of the chain. This is in contrast with the exponential decay that is found in generic nonintegrable systems. Based on our results, it is natural to expect that this scenario holds in other integrable spin models and for typical local observables. Finally, we investigate the entanglement properties of the excited states of the XXX chain. We numerically verify that typical midspectrum eigenstates exhibit extensive entanglement entropy (i.e., volume-law scaling).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据