4.6 Article

Comment on Single-point kinetic energy density functionals: A pointwise kinetic energy density analysis and numerical convergence investigation

期刊

PHYSICAL REVIEW B
卷 92, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.92.117101

关键词

-

资金

  1. US Department of Energy [DE-SC0002139]
  2. U.S. Department of Energy (DOE) [DE-SC0002139] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

We suggest a more nuanced view of the merit and utility of generalized gradient approximations (GGAs) for the noninteracting kinetic energy (KE) than the critique of Xia and Carter (XC) [Phys. Rev. B 91, 045124 (2015)]. Specifically, the multiple valuedness of the Pauli term enhancement factor (denoted G[n] by XC) with respect to the inhomogeneity variable s can be excluded by enforcement of a bound on the Kohn-Sham KE to achieve universality of the functional along with enforcement of proper large-s behavior. This is physically sensible in that the excluded G values occur for s values that correspond to low densities. The behavior is exacerbated by peculiarities of pseudodensities. The VT84F KE GGA, constructed with these constraints, does not have the numerical instability in our older PBE2 functional analyzed by XC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据