4.6 Article

Chebyshev matrix product state approach for time evolution

期刊

PHYSICAL REVIEW B
卷 92, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.92.115130

关键词

-

资金

  1. FP7/Marie-Curie [321918]
  2. DFG [FOR 801]
  3. Australian Research Council Centre of Excellence for Engineered Quantum Systems [CE110001013]
  4. Future Fellowships scheme [FT100100515]

向作者/读者索取更多资源

We present and test a new algorithm for time-evolving quantum many-body systems initially proposed by Holzner et al. [Phys. Rev. B 83, 195115 (2011)]. The approach is based on merging the matrix product state (MPS) formalism with the method of expanding the time-evolution operator in Chebyshev polynomials. We calculate time-dependent observables of a system of hardcore bosons quenched under the Bose-Hubbard Hamiltonian on a one-dimensional lattice. We compare the new algorithm to more standard methods using the MPS architecture. We find that the Chebyshev method gives numerically exact results for small times. However, the reachable times are smaller than the ones obtained with the other state-of-the-art methods. We further extend the new method using a spectral-decomposition-based projective scheme that utilizes an effective bandwidth significantly smaller than the full bandwidth, leading to longer evolution times than the nonprojective method and more efficient information storage, data compression, and less computational effort.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据