4.6 Article

Collective spin resonance excitation in the gapped itinerant multipole hidden order phase of URu2Si2

期刊

PHYSICAL REVIEW B
卷 92, 期 9, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.92.094512

关键词

-

资金

  1. Max Planck POSTECH/KOREA Research Initiative programs through the NRF - MSIP of Korea [2011-0031558]
  2. National Research Foundation of Korea [2011-0031558] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

An attractive proposal for the hidden order (HO) in the heavy electron compound URu2Si2 is an itinerant multipole order of high rank. It is due to the pairing of electrons and holes centered on the zone center and boundary, respectively, in states that have maximally different total angular momentum components. Due to the pairing with a commensurate zone boundary ordering vector the translational symmetry is broken and a HO quasiparticle gap opens below the transition temperature T-HO. Inelastic neutron scattering (INS) has demonstrated that for T < T-HO the collective magnetic response is dominated by a sharp spin exciton resonance at the ordering vector Q that is reminiscent of spin exciton modes found inside the gap of unconventional superconductors and Kondo insulators. We use an effective two-orbital tight-binding model incorporating the crystalline-electric-field effect to derive closed expressions for quasiparticle bands reconstructed by the multipolar pairing terms. We show that the magnetic response calculated within that model exhibits the salient features of the resonance found in INS. We also use the calculated dynamical susceptibility to explain the low-temperature NMR relaxation rate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据