4.4 Article

Differentiating Thermal Allodynia and Hyperalgesia Using Dynamic Hot and Cold Plate in Rodents

期刊

JOURNAL OF PAIN
卷 10, 期 7, 页码 767-773

出版社

CHURCHILL LIVINGSTONE
DOI: 10.1016/j.jpain.2009.01.325

关键词

Pain; dynamic hot/cold plate; hyperalgesia; allodynia; capsaicin; carrageenan

资金

  1. Centre National de la Recherche Scientifique
  2. Universite de Strasbourg
  3. Region Alsace
  4. Institut Universitaire de France
  5. Institut UPSA de la douleur

向作者/读者索取更多资源

In animal studies, thermal sensitivity is mostly evaluated on the basis of nociceptive reaction latencies in response to a given thermal aversive stimulus. However, these techniques may be inappropriate to differentiate allodynia from hyperalgesia or to provide information differentiating the activation of nociceptor subtypes. The recent development of dynamic hot and cold plates, allowing computer-controlled ramps of temperature, may be useful for such measures. In this study, we characterized their interest for studying thermal nociception in freely moving mice and rats. We showed that escape behavior (jumps) was the most appropriate parameter in C57BI/6J mice, whereas nociceptive response was estimated by using the sum of paw lickings and withdrawals in Sprague-Dawley rats. We then demonstrated that this procedure allows the detection of both thermal allodynia and hyperalgesia after peripheral pain sensitization with capsaicin in mice and in rats. In a condition of carrageenan-induced paw inflammation, we observed the previously described thermal hyperalgesia, but we also revealed that rats exhibit a clear thermal allodynia to a cold or a hot stimulus. These results demonstrate the interest of the dynamic hot and cold plate to study thermal nociception, and more particularly to study both thermal allodynia and hyperalgesia within a single paradigm in awake and freely moving rodents. Perspective: Despite its clinical relevance, thermal allodynia is rarely studied by researchers working on animal models. As shown after stimulation of capsaicin-sensitive fibers or during inflammatory pain, the dynamic hot and cold plate validated in the present study provides a useful tool to distinguish between thermal allodynia and thermal hyperalgesia in rodents. (C) 2009 by the American Pain Society

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据