4.6 Article

Controlling circular polarization of light emitted by quantum dots using chiral photonic crystal slabs

期刊

PHYSICAL REVIEW B
卷 92, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.92.205309

关键词

-

资金

  1. project SPANGL4Q, under FET-Open Grant [FP7-284743]
  2. RFBR [13-02-12144, 14-02-00778]
  3. state of Bavaria
  4. MWK Baden, Wurttemberg

向作者/读者索取更多资源

We study the polarization properties of light emitted by quantum dots that are embedded in chiral photonic crystal structures made of achiral planar GaAs waveguides. A modification of the electromagnetic mode structure due to the chiral grating fabricated by partial etching of the waveguide layer has been shown to result in a high circular polarization degree rho(c) of the quantum dot emission in the absence of external magnetic field. The physical nature of the phenomenon can be understood in terms of the reciprocity principle taking into account the structural symmetry. At the resonance wavelength, the magnitude of vertical bar rho(c)vertical bar is predicted to exceed 98%. The experimentally achieved value of vertical bar rho(c)vertical bar = 81% is smaller, which is due to the contribution of unpolarized light scattered by grating defects, thus breaking its periodicity. The achieved polarization degree estimated removing the unpolarized nonresonant background from the emission spectra can be estimated to be as high as 96%, close to the theoretical prediction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Editorial Material Physics, Applied

Special topic on non-classical light emitters and single-photon detectors

Christoph Becher, Sven Hoefling, Jin Liu, Peter Michler, Wolfram Pernice, Costanza Toninelli

APPLIED PHYSICS LETTERS (2022)

Article Multidisciplinary Sciences

Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths

Lukasz Dusanowski, Cornelius Nawrath, Simone L. Portalupi, Michael Jetter, Tobias Huber, Sebastian Klembt, Peter Michler, Sven Hoefling

Summary: This study demonstrates a solid-state spin-qubit platform based on a hole confined in a semiconductor quantum dot that emits telecom-band photons. The researchers showcase the control and manipulation of the hole, enabling its use in long-distance quantum communication. This work is significant for the development of solid-state quantum emitters compatible with existing optical fiber networks.

NATURE COMMUNICATIONS (2022)

Article Physics, Applied

Diamagnetic coefficients and g-factors of InAs/InGaAlAs quantum dashes emitting at telecom wavelengths

M. Burakowski, P. Mrowinski, M. Gawelczyk, J. P. Reithmaier, S. Hoefling, G. Sek

Summary: The properties of excitons, electrons, and holes in single InAs/InP asymmetric quantum dots were studied experimentally and theoretically, and it was found that they have high stability and potential for generating entangled photons.

JOURNAL OF APPLIED PHYSICS (2022)

Article Multidisciplinary Sciences

Observation of room temperature excitons in an atomically thin topological insulator

Marcin Syperek, Raul Stuhler, Armando Consiglio, Pawel Holewa, Pawel Wyborski, Lukasz Dusanowski, Felix Reis, Sven Hofling, Ronny Thomale, Werner Hanke, Ralph Claessen, Domenico Di Sante, Christian Schneider

Summary: The optical spectroscopy of ultimately thin materials has greatly benefited our understanding of collective excitations in low-dimensional semiconductors. The authors of this study report the observation of room temperature excitons in a single layer of bismuth atoms epitaxially grown on a SiC substrate, a material with non-trivial global topology. These excitonic and topological physics arise from the same electronic structure.

NATURE COMMUNICATIONS (2022)

Article Optics

Pushing the Room Temperature Continuous-Wave Operation Limit of GaSb-Based Interband Cascade Lasers beyond 6 μm

Josephine Nauschuetz, Hedwig Knoetig, Robert Weih, Julian Scheuermann, Johannes Koeth, Sven Hoefling, Benedikt Schwarz

Summary: This article presents GaSb-based interband cascade lasers (ICLs) operating at a center wavelength of 6.12 μm in continuous-wave mode up to a maximum temperature of 40 °C. The performance of the devices is improved by adjusting the Ga1-xInxSb layer thickness in the active region to reduce valence intersubband absorption. The optimization of the device design and electron injector rebalances the electron and hole concentrations, resulting in low threshold current densities and power consumption, making them suitable for mobile and compact sensing systems.

LASER & PHOTONICS REVIEWS (2023)

Article Chemistry, Multidisciplinary

Single-Photon Source in a Topological Cavity

Jonathan Jurkat, Sebastian Klembt, Marco De Gregorio, Moritz Meinecke, Quirin Buchinger, Tristan H. Harder, Johannes Beierlein, Oleg A. Egorov, Monika Emmerling, Constantin Krause, Christian Schneider, Tobias Huber-Loyola, Sven Hoefling

Summary: The introduction of topological physics to photonics has resulted in the development of robust photonic devices. While classical topological protection of light has been achieved, the utilization of quantum light sources in devices with topologically nontrivial resonances remains largely unexplored.

NANO LETTERS (2023)

Article Engineering, Electrical & Electronic

Amplification of GaSb-Based Diode Lasers in an Erbium-Doped Fluoride Fibre Amplifier

Nikolai B. Chichkov, Amit Yadav, Franck Joulain, Solenn Cozic, Semyon V. Smirnov, Leon Shterengas, Julian Scheuermann, Robert Weih, Johannes Koeth, Sven Hofling, Ulf Hinze, Samuel Poulain, Edik U. Rafailov

Summary: Building upon recent advances in GaSb-based diode lasers and Er-doped fluoride fibre technologies, this article demonstrates the fibre-based amplification of mid infrared diode lasers around 2.78 μm for the first time. The experimental results show output powers up to 0.9 W, pulse durations as short as 20 ns, and pulse repetition rates up to 1 MHz. Additionally, the impact of different fibre end-cap materials on laser performance is analyzed.

IEEE PHOTONICS JOURNAL (2023)

Article Materials Science, Multidisciplinary

Independent Tuning of Exciton and Photon Energies in an Exciton-Polariton Condensate by Proton Implantation-Induced Interdiffusion

Michael D. Fraser, H. Hoe Tan, Yago del Valle Inclan Redondo, Hima Kavuri, Elena A. Ostrovskaya, Christian Schneider, Sven Hoefling, Yoshihisa Yamamoto, Seigo Tarucha

Summary: The use of high energy proton implantation allows for precise and independent manipulation of both exciton and photon energies in GaAs microcavity exciton-polaritons. This technique involves post-growth proton implantation and annealing steps to induce small local interdiffusion, resulting in energy shifts in exciton or photon components. The polariton mode can be tuned by more than 10 meV, altering the effective mass for photon and exciton energy shifts, while maintaining narrow-linewidth polariton emission and condensation.

ADVANCED OPTICAL MATERIALS (2023)

Article Optics

Dielectric Mie voids: confining light in air

Mario Hentschel, Kirill Koshelev, Florian Sterl, Steffen Both, Julian Karst, Lida Shamsafar, Thomas Weiss, Yuri Kivshar, Harald Giessen

Summary: Manipulating light on the nanoscale requires resonant light confinement, which is often restricted by the dispersion and loss of metals and dielectrics. However, this study presents a novel strategy for dielectric nanophotonics by achieving resonant subwavelength localized confinement of light in air. The experiments demonstrate the exceptional optical properties of voids created in high-index dielectric host materials, which offer bright and intense colors for nanoscale color printing and expand the parameter space for the design of metasurfaces and other micro- and nanoscale optical elements.

LIGHT-SCIENCE & APPLICATIONS (2023)

Article Physics, Applied

Optical properties of circular Bragg gratings with labyrinth geometry to enable electrical contacts

Quirin Buchinger, Simon Betzold, Sven Hoefling, Tobias Huber-Loyola

Summary: We conducted an optical study on various device designs of electrically contactable circular Bragg grating cavities in labyrinth geometries. In order to establish an electrical connection between the central disk and the surrounding membrane, we introduced connections between the adjacent rings separated by air gaps. By rotating these connections to create a labyrinth-like structure, we improved mode confinement, far-field pattern, and Purcell factor compared to layouts with connections arranged in straight lines. Reflectivity measurements and simulations were conducted to investigate the effects of different arrangements and sizes of connections on the optical properties and to determine the optimal design.

APPLIED PHYSICS LETTERS (2023)

Article Chemistry, Multidisciplinary

Moire Pattern Formation in Epitaxial Growth on a Covalent Substrate: Sb on InSb(111)A

Bing Liu, Tim Wagner, Stefan Enzner, Philipp Eck, Martin Kamp, Giorgio Sangiovanni, Ralph Claessen

Summary: By synthesizing ultrathin Sb films on semi-insulating InSb(111)A substrate, researchers observe a pronounced moire pattern on the Sb films and confirm experimentally that the topological surface state persists and shifts toward lower binding energies with a decrease in Sb thickness, in agreement with theoretical predictions.

NANO LETTERS (2023)

Article Chemistry, Multidisciplinary

Optically Driven Rotation of Exciton-Polariton Condensates

Yago del Valle-Inclan Redondo, Christian Schneider, Sebastian Klembt, Sven Hoefling, Seigo Tarucha, Michael D. Fraser

Summary: We have created a rotating polariton condensate at gigahertz frequencies by off-resonantly pumping with a rotating optical stirrer composed of structured laser modes. The results show that the rotating polariton condensate acquires angular momentum exceeding the critical 1n/particle and demonstrates deterministic nucleation and capture of quantized vortices with a handedness controlled by the pump rotation direction. This study enables new opportunities for exploring open dissipative superfluidity, ordering of non-Hermitian quantized vortex matter, and topological states in a highly nonlinear, photonic platform.

NANO LETTERS (2023)

Article Physics, Multidisciplinary

Tracking Quantum Coherence in Polariton Condensates with Time-Resolved Tomography

Carolin Lueders, Matthias Pukrop, Franziska Barkhausen, Elena Rozas, Christian Schneider, Sven Hoefling, Jan Sperling, Stefan Schumacher, Marc Assmann

Summary: We have developed a novel phase-space method to dynamically monitor quantum coherence in polariton condensates. Our approach allows us to quantify complex decoherence mechanisms and provides a stable system for long-term coherence. By reconstructing phase-space functions from homodyne detection data, we have demonstrated the potential of using quantum coherence for information processing up to the nanosecond regime.

PHYSICAL REVIEW LETTERS (2023)

Article Multidisciplinary Sciences

Superscattering emerging from the physics of bound states in the continuum

Adria Canos Valero, Hadi K. Shamkhi, Anton S. Kupriianov, Thomas Weiss, Alexander A. Pavlov, Dmitrii Redka, Vjaceslavs Bobrovs, Yuri Kivshar, Alexander S. Shalin

Summary: The authors demonstrate a super dipole resonance that arises from interfering resonant modes in the scattering of light by small particles. They study the Mie-like scattering from a subwavelength resonator made of a high-index dielectric material and uncover a novel mechanism of superscattering linked to bound states in the continuum. They develop a non-Hermitian model to describe interfering resonances and confirm their findings through a scattering experiment.

NATURE COMMUNICATIONS (2023)

Article Materials Science, Multidisciplinary

Purcell effect in two-dimensional photonic crystal slabs with triangular lattice

Sergey A. Dyakov, Ilia M. Fradkin, Dmitry Yurasov, Vladimir A. Zinovyev, Sergei G. Tikhodeev, Nikolay A. Gippius

Summary: We present the theoretical studies on the Purcell effect in infinite photonic crystal slabs without defects or cavities. By placing the dipoles in the hot spots of modes with the zero group velocity, the Purcell factor can be greatly enhanced. This effect is associated with Van Hove singularities.

PHYSICAL REVIEW B (2023)

暂无数据