4.6 Article

Floquet-Boltzmann equation for periodically driven Fermi systems

期刊

PHYSICAL REVIEW A
卷 92, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.92.062108

关键词

-

资金

  1. Deutsche Telekom Stiftung
  2. Bonn-Cologne Graduate School of Physics and Astronomy

向作者/读者索取更多资源

Periodically driven quantum systems can be used to realize quantum pumps, ratchets, artificial gauge fields, and novel topological states of matter. Starting from the Keldysh approach, we develop a formalism, the Floquet-Boltzmann equation, to describe the dynamics and the scattering of quasiparticles in such systems. The theory builds on a separation of time scales. Rapid, periodic oscillations occurring on a time scale T-0 = 2 pi/Omega are treated using the Floquet formalism and quasiparticles are defined as eigenstates of a noninteracting Floquet Hamiltonian. The dynamics on much longer time scales, however, is modeled by a Boltzmann equation which describes the semiclassical dynamics of the Floquet quasiparticles and their scattering processes. As the energy is conserved only modulo (h) over bar Omega, the interacting system heats up in the long-time limit. As a first application of this approach, we compute the heating rate for a cold-atom system, where a periodical shaking of the lattice was used to realize the Haldane model [G. Jotzu et al., Nature (London) 515, 237 (2014)].

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据