4.7 Article

Concise Stereocontrolled Formal Synthesis of (±)-Quinine and Total Synthesis of (±)-7-Hydroxyquinine via Merged Morita-Baylis-Hillman-Tsuji-Trost Cyclization

期刊

JOURNAL OF ORGANIC CHEMISTRY
卷 73, 期 23, 页码 9379-9387

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jo802165k

关键词

-

资金

  1. Sloan Foundation
  2. Dreyfus Foundation
  3. Eli Lilly
  4. Johnson Johnson
  5. Robert A. Welch Foundation
  6. NSF [CHE-0749016]
  7. Direct For Mathematical & Physical Scien
  8. Division Of Chemistry [0749016] Funding Source: National Science Foundation

向作者/读者索取更多资源

Concise stereoselective syntheses of (+/-)-quinine and (+/-)-7-hydroxyquinine are achieved using a catalytic enone cycloallylation that combines the nucleophilic features of the Morita-Baylis-Hillman reaction and the electrophilic features of the Tsuji-Trost reaction. Cyclization of enone-allyl carbonate 11 delivers the product of cycloallylation 13 in 68% yield. Diastereoselective conjugate reduction of the enone 13 (>20:1 dr) followed by exchange of the N-protecting group provides the saturated N-Boc-protected methyl ketone 19, which upon aldol dehydration provides quinoline containing enone 15, possessing all carbon atoms of quinine. Exposure of ketone 15 to L-selectride enables diastereoselective carbonyl reduction (>20:1 dr) to furnish the allylic alcohol 16. Stereoselective hydroxyl-directed epoxidation using an oxovanadium catalyst modified by N-hydroxy-N-Me-pivalamide delivers epoxide 17 (17:1 dr). Cyclization of the resulting amine-epoxide 17 provides (+/-)-7-hydroxyquinine in 13 steps and 11% overall yield from aminoacetaldehyde diethyl acetal. Notably, highly stereoselective formation of five contiguous stereocenters is achieved through a series of 1,2-asymmetric induction events. Deoxygenation of the N-Cbz-protected allylic acetate 22 provides olefin 23, which previously has been converted to quinine. Thus, (+/-)-quinine is accessible in 16 steps and 4% overall yield from commercial aminoacetaldehyde diethyl acetal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据