4.6 Article

Methane partial oxidation using FeOx@La0.8Sr0.2FeO3-δ core-shell catalyst - transient pulse studies

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 17, 期 46, 页码 31297-31307

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5cp05583k

关键词

-

资金

  1. U.S. National Science Foundation [CBET-1254351]
  2. Kenan Institute
  3. Army research office DURIP Project [65260-CH-RIP]
  4. State of North Carolina
  5. National Science Foundation
  6. Directorate For Engineering
  7. Div Of Chem, Bioeng, Env, & Transp Sys [1254351] Funding Source: National Science Foundation

向作者/读者索取更多资源

The chemical looping reforming (CLR) process, which utilizes a transition metal oxide based redox catalyst to partially oxidize methane to syngas, represents a potentially efficient approach for methane valorization. The CLR process inherently avoids costly cryogenic air separation by replacing gaseous oxygen with regenerable ionic oxygen (O2-) from the catalyst lattice. Our recent studies show that an Fe2O3@La0.8Sr0.2FeO3-delta core-shell redox catalyst is effective for CLR, as it combines the selectivity of an LSF shell with the oxygen capacity of an iron oxide core. The reaction between methane and the catalyst is also found to be highly dynamic, resulting from changes in lattice oxygen availability and surface properties. In this study, a transient pulse injection approach is used to investigate the mechanisms of methane partial oxidation over the Fe2O3@LSF redox catalyst. As confirmed by isotope exchange, the catalyst undergoes transitions between reaction regions'' with markedly different mechanisms. While oxygen evolution maintains a modified Mars-van Krevelen mechanism throughout the reaction with O2- conduction being the rate limiting step, the mechanism of methane conversion changes from an Eley-Rideal type in the first reaction region to a Langmuir-Hinshelwood-like mechanism in the third region. Availability of surface oxygen controls the reduction scheme of the catalyst and the underlying reaction mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据