4.6 Article

Adipokine pathways are altered in hippocampus of an experimental mouse model of Alzheimer's disease

期刊

JOURNAL OF NUTRITION HEALTH & AGING
卷 19, 期 4, 页码 403-412

出版社

SPRINGER FRANCE
DOI: 10.1007/s12603-014-0574-5

关键词

APP/PS1; leptin; hippocampus; prolactin; Alzheimer.

资金

  1. Generalitat de Catalunya (autonomous government of Catalonia) [2009/SGR00853]
  2. Spanish Ministerio de Ciencia e Innovacion [SAF2011-23631, SAF2012-39852-C02-01]
  3. CONACYT (Mexico) [0177594]

向作者/读者索取更多资源

A growing body of evidence suggests that beta-amyloid peptides (A beta) are unlikely to be the only factor involved in Alzheimer's disease (AD) aetiology. In fact, a strong correlation has been established between AD patients and patients with type 2 diabetes and/or cholesterol metabolism alterations. In addition, a link between adipose tissue metabolism, leptin signalling in particular, and AD has also been demonstrated. In the present study we analyzed the expression of molecules related to metabolism, with the main focus on leptin and prolactin signalling pathways in an APPswe/PS1dE9 (APP/PS1) transgenic mice model, at 3 and 6 months of age, compared to wild-type controls. We have chosen to study 3 months-old APP/PS1 animals at an age when neither the cognitive deficits nor significant A beta plaques in the brain are present, and to compare them to the 6 months-old mice, which exhibit elevated levels of A beta in the hippocampus and memory loss. A significant reduction in both mRNA and protein levels of the prolactin receptor (PRL-R) was detected in the hippocampi of 3 months old APP/PS1 mice, with a decrease in the levels of the leptin receptor (OB-R) first becoming evident at 6 months of age. We proceeded to study the expression of the intracellular signalling molecules downstream of these receptors, including stat (1-5), sos1, kras and socs (1-3). Our data suggest a downregulation in some of these molecules such as stat-5b and socs (1-3), in 3 months-old APP/PS1 brains. Likewise, at the same age, we detected a significant reduction in mRNA levels of lrp1 and cyp46a1, both of which are involved in cholesterol homeostasis. Taken together, these results demonstrate a significative impairment in adipokine receptors signalling and cholesterol regulation pathways in the hippocampus of APP/PS1 mice at an early age, prior to the A beta plaque formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据