4.7 Article

Proton irradiation creep of beta-silicon carbide

期刊

JOURNAL OF NUCLEAR MATERIALS
卷 418, 期 1-3, 页码 198-206

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jnucmat.2011.06.047

关键词

-

资金

  1. US Department of Energy, NERI-C [DE-FG07-07ID14894]

向作者/读者索取更多资源

In situ irradiation creep behavior of chemically vapor-deposited (CVD) polycrystalline beta silicon carbide (beta-SiC) has been studied using proton beam of energies 2.8 MeV and 3.2 MeV. Experiments were conducted at 1183 K and at stresses of 18.5 MPa and 97.9 MPa between dose rates of 1.5 and 2.45 x 10(-6) dpa/s. Strain was measured using a laser speckle extensometer (LSE) and a linear variable differential transformer (LVDT), and temperature was measured using a 2-dimensional infrared pyrometer. Results showed that the total strain rate increased with increasing stress and dose rate. Shifts of XRD peaks following proton irradiation of SiC at 1183 K indicated that swelling had occurred and that it increased with dose. A uniform expansion of the lattice with no X-ray line broadening clearly indicated that the swelling at doses up to 0.37 dpa was due to single point defects. The swelling rate was determined and subtracted from the measured total strain rate to obtain the true creep rate. The creep rate was found to exhibit a linear dependence on the applied tensile stress, and on dose rate to the third power. (c) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

Editorial Material Instruments & Instrumentation

Creation of a remotely monitored and controlled ion beam laboratory using novel hardware and software tools

T. Kubley, F. Naab, O. Toader, G. Was

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS (2019)

Article Materials Science, Multidisciplinary

Stress Localization Resulting from Grain Boundary Dislocation Interactions in Relaxed and Defective Grain Boundaries

Bryan Kuhr, Diana Farkas, Ian M. Robertson, Drew Johnson, Gary Was

METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE (2020)

Article Materials Science, Multidisciplinary

Effects of post-irradiation annealing on the IASCC susceptibility of neutron-irradiated 304L stainless steel

Justin Hesterberg, Zhijie Jiao, Gary S. Was

JOURNAL OF NUCLEAR MATERIALS (2019)

Article Materials Science, Multidisciplinary

Emulation of fast reactor irradiated T91 using dual ion beam irradiation

Stephen Taller, Zhijie Jiao, Kevin Field, Gary S. Was

JOURNAL OF NUCLEAR MATERIALS (2019)

Review Materials Science, Multidisciplinary

Materials for future nuclear energy systems

G. S. Was, D. Petti, S. Ukai, S. Zinkle

JOURNAL OF NUCLEAR MATERIALS (2019)

Editorial Material Materials Science, Multidisciplinary

Editorial

Gary S. Was

JOURNAL OF NUCLEAR MATERIALS (2019)

Article Materials Science, Multidisciplinary

Effect of radiation damage and water radiolysis on corrosion of FeCrAl alloys in hydrogenated water

Peng Wang, Slavica Grdanovska, David M. Bartels, Gary S. Was

JOURNAL OF NUCLEAR MATERIALS (2020)

Article Materials Science, Multidisciplinary

Understanding bubble and void nucleation in dual ion irradiated T91 steel using single parameter experiments

Stephen Taller, Gary S. Was

ACTA MATERIALIA (2020)

Article Instruments & Instrumentation

A methodology for customizing implantation profiles of light ions using a single thin foil energy degrader

Stephen Taller, Fabian Naab, Gary S. Was

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS (2020)

Article Materials Science, Multidisciplinary

Microstructural characterization of cold-worked 316 stainless steel flux thimble tubes irradiated up to 100 dpa in a commercial Pressurized Water Reactor

Miao Song, Kevin G. Field, Richard M. Cox, Gary S. Was

JOURNAL OF NUCLEAR MATERIALS (2020)

Article Materials Science, Multidisciplinary

Synergies between H, He and radiation damage in dual and triple ion irradiation of candidate fusion blanket materials

Logan N. Clowers, Zhijie Jiao, Gary S. Was

Summary: Three ferritic/martensitic alloys were irradiated with single, dual, and triple ion beams to study cavity evolution. Co-injection of hydrogen with helium increased cavity number density and size, leading to higher swelling. F82H alloy exhibited the lowest swelling due to high sink strength, while CNA3 alloy showed higher swelling than F82H due to lower sink strength caused by precipitation dissolution.

JOURNAL OF NUCLEAR MATERIALS (2022)

Article Materials Science, Multidisciplinary

Ion irradiation induced amorphization of precipitates in Zircaloy

J. Bowman, P. Wang, G. S. Was, M. Bachhav, A. T. Motta

Summary: Samples of Zircaloy-4 were ion irradiated at various doses and temperatures to study the amorphization and dissolution behavior of second-phase precipitates. The results showed that similar amorphization morphology occurred under proton irradiation as under neutron irradiation near the critical temperature for amorphization. However, the rate of amorphous layer advancement was slower under proton irradiation and did not lead to complete amorphization. The critical temperature for bulk amorphization primarily depended on the displacement cascade density achievable with the irradiating particle and secondarily with dose rate.

JOURNAL OF NUCLEAR MATERIALS (2022)

Article Materials Science, Multidisciplinary

H dissolution and desorption near He-V complexes in W surfaces with different orientations

Liuming Wei, Jingwen Li, Yonggang Li, Qirong Zheng, Fan Cheng, Chuanguo Zhang, Jingyu Li, Gaofeng Zhao, Zhi Zeng

Summary: This study investigates the influence of He-V complexes on H behaviors on different W surfaces using DFT calculations. The results show that H dissolution is most difficult but H trapping is easiest on the W (110) surface, while the opposite is true on the W (111) surface. Moreover, the presence of He-V complexes increases the difficulty of H diffusion from bulk to surface and desorption.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

Effect of deposition parameters on characteristics and oxidation behavior of magnetron sputtered Cr coatings

Yan Meng, Song Zeng, Chen Chen, Chaowen Zhu, Huahai Shen, Xiaosong Zhou, Xiaochun Han

Summary: The characteristics of magnetron sputtered Cr coatings vary with different temperature, bias voltage, and pressure. Coatings with random orientation, good crystallinity, and small grain size exhibit favorable oxidation behavior, while coatings with strong (200) texture, poor crystallinity, and large grains have many intrinsic defects that are detrimental to the protection property of the Cr coatings.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

Automated analysis of grain morphology in TEM images using convolutional neural network with CHAC algorithm

Xinyuan Xu, Zefeng Yu, Wei-Ying Chen, Aiping Chen, Arthur Motta, Xing Wang

Summary: This study presents an automated approach for characterizing grain morphology in TEM images recorded during ion irradiation. By combining a machine learning model and a computer vision algorithm, comparable results to human analysis can be achieved with significantly reduced analysis time. Researchers can train their own models following the procedures described in this study to automate grain morphology analysis of their own TEM images.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

Model development for oxidation and degradation behavior of accident tolerant Cr coating on Zr alloy cladding under high temperature steam atmosphere

Shihao Wu, Dong Wang, Yapei Zhang, Koji Okamoto, Marco Pellegrini, Wenxi Tian, Suizheng Qiu, G. H. Su

Summary: The oxidation and degradation mechanisms of Cr coating on Zr alloy cladding under high temperature steam atmosphere are summarized, and a mathematical analysis model is established to predict the changes in coating thickness. The model is applied in the analysis of structure evolution under different conditions.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

Numerical and experimental development of cupronickel filler brazed joints for divertor and first wall components in DEMO fusion reactor

V. Diaz-Mena, J. de Prado, M. Roldan, I. Izaguirre, M. Sanchez, M. Rieth, A. Urena

Summary: The brazeability of a cupronickel alloy was evaluated as a filler alloy for high-temperature joining of tungsten to steel. The study investigated the brazing conditions and the impact of the selected filler on the joint quality using numerical software. The results showed different metallurgical interactions and diffusion phenomena between the filler alloy and the base materials at different temperatures. The study emphasized the importance of selecting a suitable filler to mitigate residual stresses in the joints.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

Defect-specific strength factors and superposition model for predicting strengthening of ion irradiated Fe18Cr alloy

Pengcheng Zhu, Yajie Zhao, Yan-Ru Lin, Jean Henry, Steven J. Zinkle

Summary: This study investigates the effect of heavy-ion irradiation on radiation hardening in high-purity binary alloy Fe18Cr. Nanoindentation testing and high-quality TEM imaging were conducted to extract hardness and microstructure information. The strength factor was accurately calculated based on the detailed TEM characterization of irradiated microstructures, and a refined hardening superposition method was applied to quantify the mechanical properties of ion-irradiated materials.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

Synthesis and characterization of sodium-aluminophosphate based glass-ceramics containing NZP phase for HLW immobilization

Bin Wu, Haixia Ning, Hanzhen Zhu, Jianjun Chen, Kang Wang, Daiyu Zhang, Fu Wang, Qilong Liao

Summary: This study discusses the effects of ZrO2 and B2O3 on the phase composition and properties of SAP-based glass-ceramics. The results show that ZrO2 addition improves the formation of NZP phase while restricting the crystallization of AlPO4 phases. The correct ratios of ZrO2 and B2O3 allow only the formation of NZP phase within the SAP glass.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

High temperature oxidation of cold spray Cr-coated accident tolerant zirconium-alloy cladding with Nb diffusion barrier layer

Hwasung Yeom, Greg Johnson, Benjamin Maier, Tyler Dabney, Kumar Sridharan

Summary: Cr-Nb bilayer coatings were developed using cold spray deposition to improve the limiting operational temperature of Cr-coated Zr-alloy system. The coatings exhibited outstanding oxidation resistance at high temperatures and formed continuous intermetallic compound layers at the interfaces.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

Irradiation creep measurement and microstructural analysis of chromium nitride-coated zirconium alloy using pressurized tubes

Padhraic L. Mulligan, Andrew T. Nelson, Chad M. Parish, Patrick A. Champlin, Xiang Chen, Daniel Morrall, Jason M. Harp

Summary: Environmental barrier coatings are being developed to reduce oxidation and embrittlement in Zr-based materials. Chromium nitride is a candidate for this application, but understanding its impact on irradiation-induced creep and microstructure is critical.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

Determination of impurity distribution in IG-11/110 nuclear graphite using TOF-SIMS

Dexuan Yan, Xinlei Cao, Ke Shen

Summary: This study investigated the purification mechanism of polycrystalline graphite by comparing IG-11 graphite with IG-110 nuclear grade graphite. The analysis revealed that metallic impurities in IG-11 were primarily segregated within graphite porosities, while IG-110 demonstrated a significant reduction in impurities. This research contributes to the development of innovative graphite purification techniques for greater purity and stronger oxidation resistance.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

Study of multi-pebble oxidation process in high-temperature gas-cooled reactor

Wei Xu, Wei Peng, Lei Shi, Qi Sun

Summary: This paper investigates the oxidation and shape evolution of matrix graphite in high temperature gas-cooled reactors during air-ingress accidents. A reaction kinetics model is established and computational fluid dynamics with a dynamic mesh method is used to simulate the oxidation process. The results show that the geometric shape of graphite changes significantly with increasing flow rate, and the graphite pebbles tend to form a structure with a narrow front and wide tail.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

Synthesis and characterization of super occluded LiCl-KCl in zeolite-4A as a chloride salt waste form intermediate

Allison Harward, Casey Elliott, Michael Shaltry, Krista Carlson, Tae-Sic Yoo, Guy Fredrickson, Michael Patterson, Michael F. Simpson

Summary: This paper investigates the hygroscopic properties of eutectic LiCl-KCl absorbed into zeolite-4A. The study finds that water absorption and corrosion worsen with increasing salt loading. It also suggests that the salt can be stored in a non-inert atmosphere for a certain period of time.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

Hermeticity of SiC/SiC composite and monolithic SiC tubes irradiated under radial high-heat flux

Takaaki Koyanagi, Xunxiang Hu, Christian M. Petrie, Gyanender Singh, Caen Ang, Christian P. Deck, Weon-Ju Kim, Daejong Kim, James Braun, Yutai Katoh

Summary: This study provides critical experimental data on the effects of irradiation on the hermeticity of SiC composite cladding, finding that irradiation can cause a decrease in hermeticity and cracking, and coating the outer surface can mitigate the cracking issue.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

Theoretical estimation of multiple hydrogen isotope content in metal layers slowly co-deposited from plasmas

S. Krat, A. Prishvitsyn, Yu. Gasparyan

Summary: This study proposes a probabilistic and diffusion-based model to describe the co-deposition of multiple hydrogen isotopes with slowly grown metal layers. The model calculates the relative concentrations of different hydrogen isotopes in the co-deposited metal layers. It is found that if hydrogen isotopes have different detrapping energies, only the isotope with the highest detrapping energy shows a monotonic decrease in concentration with deposition temperature. Furthermore, the study evaluates the uncertainty of tritium concentration in the co-deposited layer based on the uncertainty in detrapping energy of tritium and deuterium, predicting a >10% tritium concentration uncertainty for a 0.01 eV difference.

JOURNAL OF NUCLEAR MATERIALS (2024)

Article Materials Science, Multidisciplinary

Computational study of thermophysical properties of cerium doped UO2: Effect of oxidation states

Tijo Vazhappilly, Arup Kumar Pathak

Summary: This study investigates the effect of Ce atom substitution in UO2 on its thermophysical properties using density functional theory. The results show that the Ce substitution levels and the oxidation state of Ce/U atoms strongly influence the band structure and specific heat capacity of the UO2 lattice. These findings provide important insights into the fuel properties of UO2 under reactor conditions.

JOURNAL OF NUCLEAR MATERIALS (2024)