4.1 Editorial Material

Characterization of retinoic acid-inducible gene-I expression in primary murine glia following exposure to vesicular stomatitis virus

期刊

JOURNAL OF NEUROVIROLOGY
卷 14, 期 6, 页码 503-513

出版社

SPRINGER
DOI: 10.1080/13550280802337217

关键词

rhabdoviruses; microglia; astrocytes; pattern recognition receptors; RIG-I-like receptors

资金

  1. NINDS NIH HHS [NS050325, R01 NS050325, NS057434, R03 NS057434] Funding Source: Medline

向作者/读者索取更多资源

Vesicular stomatitis virus (VSV) is a negative-sense single-stranded RNA virus that closely resembles its deadly cousin, rabies virus. In mice, VSV elicits a rapid and severe T cell-independent encephalitis, indicating that resident glial cells play an important role in the initiation of central nervous system (CNS) inflammation. Recently, retinoic acid-inducible gene I (RIG-I)-like helicases have been shown to function as intracellular pattern recognition receptors for replicative viral RNA motifs. In the present study, we demonstrate that the expression of two members of this RIG-I-like receptor family (RI,R), RIG-I and melanoma differentiation-associated antigen 5 (MDA5), are elevated in mouse brain tissue following intranasal administration of VSV. Using isolated cultures of primary murine glial cells, we demonstrate that microglia and astrocytes constitutively express both RIG-I and MDA5 transcripts and protein. Importantly, we show that such expression is elevated following challenge with VSV or another negative-sense RNA virus, Sendai virus. The authors provide evidence that such induction is indirect and secondary to the production of soluble mediators by infected cells. Circumstantial evidence for the functional nature of RLR expression in glial cells comes from the observation that microglia express the RLR downstream effector molecule, interferon promoter stimulator-1, and demonstrate diminished levels of the negative RLR regulator, laboratory of genetics and physiology 2, following viral challenge. These findings raise the exciting possibility that RLR molecules play important roles in the detection of viral CNS pathogens and the initiation of protective immune responses or, alternatively, the progression of damaging inflammation within the brain. Journal of NeuroVirology (2008) 14, 503-513.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据