4.6 Article

Application of a flexible CO2 laser fiber for neurosurgery: laser-tissue interactions Laboratory investigation

期刊

JOURNAL OF NEUROSURGERY
卷 112, 期 2, 页码 434-443

出版社

AMER ASSOC NEUROLOGICAL SURGEONS
DOI: 10.3171/2009.7.JNS09356

关键词

carbon dioxide laser; laser surgery; optical fiber; swine

资金

  1. OmniGuide, Inc.
  2. Barrow Neurological Foundation
  3. University of Alberta

向作者/读者索取更多资源

Object. The CO2 laser has an excellent profile for use in neurosurgery. Its high absorption in water results in low thermal spread, sparing adjacent tissue. Use of this laser has been limited to line-of-sight applications because no solid fiber optic cables could transmit its wavelength. Flexible photonic bandgap fiber technology enables delivery of CO2 laser energy through a flexible fiber easily manipulated in a handheld device. The authors examined and compared the first use of this CO2 laser fiber to conventional methods for incising neural tissue. Methods. Carbon dioxide laser energy was delivered in pulsed or continuous wave settings for different power settings, exposure times, and distances to cortical tissue of 6 anesthetized swine. Effects of CO2 energy on the tissue were compared with bipolar cautery using a standard pial incision technique, and with scalpel incisions without cautery. Tissue was processed for histological analysis (using H & E, silver staining, and glial fibrillary acidic protein immunohistochemistry) and scanning electron microscopy, and lesion measurements were made. Results. Light microscopy and scanning electron microscopy revealed laser incisions of consistent shape, with central craters surrounded by limited zones of desiccated and edematous tissue. Increased laser power resulted in deeper but not significantly wider incisions. Bipolar cautery lesions showed desiccated and edematous zones but did not incise the pia, and width increased more than depth with higher power. Incisions made without using cautery produced hemorrhage but minimal adjacent tissue damage. Conclusions. The photonic bandgap fiber CO2 laser produced reliable cortical incisions, adjustable over a range of settings, with minimal adjacent thermal tissue damage. Ease of application under the microscope suggests this laser system has reached true practicality for neurosurgery. (DOI: 10.3171/2009.7.JNS09356)

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据