4.5 Article

Differential Effects of the Mitochondrial Uncoupling Agent, 2,4-Dinitrophenol, or the Nitroxide Antioxidant, Tempol, on Synaptic or Nonsynaptic Mitochondria After Spinal Cord Injury

期刊

JOURNAL OF NEUROSCIENCE RESEARCH
卷 87, 期 1, 页码 130-140

出版社

WILEY
DOI: 10.1002/jnr.21814

关键词

electron transport system; excitotoxicity; mitochondrial bioenergetics; mitochondrial membrane potential (Delta Psi); mitochondrial permeability transition; oxidative damage

资金

  1. Kentucky Spinal Cord and Head Injury Research Trust [3-11, NS 048191]
  2. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [R01NS048191] Funding Source: NIH RePORTER

向作者/读者索取更多资源

We recently documented the progressive nature of mitochondrial dysfunction over 24 hr after contusion spinal cord injury (SCI), but the underlying mechanism has not been elucidated. We investigated the effects of targeting two distinct possible mechanisms of mitochondrial dysfunction by using the mitochondrial uncoupler 2,4-dinitrophenol (2,4-DNP) or the nitroxide antioxidant Tempol after contusion SCI in rats. A novel aspect of this study was that all assessments were made in both synaptosomal (neuronal)- and nonsynaptosomal (glial and neuronal soma)-derived mitochondria 24 hr after injury. Mitochondrial uncouplers target Ca2+ cycling and subsequent reactive oxygen species production in mitochondria after injury. When 2,4-DNP was injected 15 and 30 min after injury, mitochondrial function was preserved in both populations compared with vehicle-treated rats, whereas 1 hr postinjury treatment was ineffective. Conversely, targeting peroxynitrite with Tempol failed to maintain normal bioenergetics in synaptic mitochondria, but was effective in nonsynaptic mitochondria when administered 15 min after injury. When administered at 15 and 30 min after injury, increased hydroxynonenal, 3-NT, and protein carbonyl levels were significantly reduced by 2,4-DNP, whereas Tempol only reduced 3-NT and protein carbonyls after SCI. Despite such antioxidant effects, only 2,4-DNP was effective in preventing mitochondrial dysfunction, indicating that mitochondrial Ca2+ overload may be the key mechanism involved in acute mitochondrial damage after SCI. Collectively, our observations demonstrate the significant role that mitochondrial dysfunction plays in SCI neuropathology. Moreover, they indicate that combinatorial therapeutic approaches targeting different populations of mitochondria holds great potential in fostering neuroprotection after acute SCI. (C) 2008 Wiley-Liss,Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据