4.5 Article

Expression and Molecular Diversity of Tcf7l2 in the Developing Murine Cerebellum and Brain

期刊

JOURNAL OF NEUROSCIENCE RESEARCH
卷 87, 期 7, 页码 1532-1546

出版社

WILEY
DOI: 10.1002/jnr.21989

关键词

Wingless; neural precursor; colliculus inferior; splicing

资金

  1. Deutsche Akademische Austauschdienst [A/05/31550]

向作者/读者索取更多资源

The Wingless family of secreted proteins impinges on multiple aspects of vertebrate nervous system development, from early global patterning and cell fate decision to synaptogenesis. Here, we mapped the developmental expression of the Tcf7l2, which is key to the canonical Wingless signaling cascade, in the developing cerebellum. The exclusive and transient expression of Tcf7l2 in ventricular and Olig2-defined precursor cells within the cerebellar anlage, and its predominant expression in postmitotic neurons in the midbrain/inferior colliculus allowed us to ask whether cell type-specific differences are also reflected in splice isoform variability. We also included in this analysis intestinal epithelia, where Tcf7l2 function has been intensively studied. Our data reveal extensive variability of Tcf7l2 splicing in the central nervous system. Additional variability in brain-expressed Tcf7l2 is generated by a length polymorphism of expressed mRNAs in a stretch of normally nine adenines found at the beginning of exon 18, reminiscent of variability observed at the same site in cancers with microsatellite instability. A consensus emerging from our data is that the expression of isoforms comprising or lacking the C-clamp motif, which has been linked by in vitro studies to the regulation of cell growth, is indeed tightly correlated with the proliferative status in vivo. (C) 2009 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据