4.4 Article

The use of macroelectrodes in recording cellular spiking activity

期刊

JOURNAL OF NEUROSCIENCE METHODS
卷 206, 期 1, 页码 34-39

出版社

ELSEVIER
DOI: 10.1016/j.jneumeth.2012.02.002

关键词

Deep brain stimulation; Parkinson's disease; Macroelectrode; Microelectrode; Local field potential; Cellular spiking

向作者/读者索取更多资源

Microelectrode recording (MER) is an important navigational and investigational tool, specifically with regard to deep brain stimulation (DBS) surgery. MER is often utilized when targeting the subthalamic nucleus (STN) and other deep brain nuclei in the management of Parkinson's disease (PD), tremor, dystonia and other emerging applications. Microelectrodes are used to detect and measure cellular spiking activity while macroelectrodes are considered more suitable for measuring the collective sum of slow potentials from multiple cells near the electrode, the local field potential (LFP). Precisely how the characteristics of an electrode affect the data recorded is still unclear. Technical idiosyncrasies of some surgical cases allowed serendipitous data collection from a 250 to 6000 Hz bandpassed macroelectrode recording during DBS implantation for PD. Simultaneous recording from both a microelectrode and macroelectrode were compared along the same surgical trajectory. Audio, normalized root mean square of the recorded signal, and power spectrograms were used to analyze the data. The analyses demonstrate similar results in detecting cellular spiking activity when recording with macroelectrodes compared with microelectrodes. This has important implications for the standardization of recording electrophysiological data as well as for the development of next generation closed-loop deep brain stimulation systems. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据