4.7 Article

Calsyntenin-1 Regulates Targeting of Dendritic NMDA Receptors and Dendritic Spine Maturation in CA1 Hippocampal Pyramidal Cells during Postnatal Development

期刊

JOURNAL OF NEUROSCIENCE
卷 34, 期 26, 页码 8716-8727

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.0144-14.2014

关键词

CA1 pyramidal cells; calsyntenin-1; GluN2B subunit; NMDA receptors; receptor targeting; spine maturation

资金

  1. Swiss Foundation for Excellence and Talent in Biomedical Research
  2. Novartis Foundation for Medical Biological Research
  3. Swiss National Science Foundation

向作者/读者索取更多资源

Calsyntenin-1 is a transmembrane cargo-docking protein important for kinesin-1-mediated fast transport of membrane-bound organelles that exhibits peak expression levels at postnatal day 7. However, its neuronal function during postnatal development remains unknown. We generated a knock-out mouse to characterize calsyntenin-1 function in juvenile mice. In the absence of calsyntenin-1, synaptic transmission was depressed. To address the mechanism, evoked EPSPs were analyzed revealing a greater proportion of synaptic GluN2B subunit-containing receptors typical for less mature synapses. This imbalance was due to a disruption in calsyntenin-1-mediated dendritic transport of NMDA receptor subunits. As a consequence of increased expression of GluN2B subunits, NMDA receptor-dependent LTP was enhanced at Schaffer collateral-CA1 pyramidal cell synapses. Interestingly, these defects were accompanied by a decrease in dendritic arborization and increased proportions of immature filopodia-like dendritic protrusions at the expense of thin-type dendritic spines in CA1 pyramidal cells. Thus, these results highlight a key role for calsyntenin-1 in the transport of NMDA receptors to synaptic targets, which is necessary for the maturation of neuronal circuits during early development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据