4.7 Article

The Presynaptic Dense Projection of the Caenorhabiditis elegans Cholinergic Neuromuscular Junction Localizes Synaptic Vesicles at the Active Zone through SYD-2/Liprin and UNC-10/RIM-Dependent Interactions

期刊

JOURNAL OF NEUROSCIENCE
卷 31, 期 12, 页码 4388-4396

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.6164-10.2011

关键词

-

资金

  1. Inserm
  2. Agence Nationale de la Recherche [ANR-07-NEURO-032-01]
  3. Fondation pour la Recherche Medicale
  4. Federation pour la Recherche sur le Cerveau
  5. Rotary International
  6. Association Francaise contre les Myopathies
  7. German Academic Exchange Service
  8. European Molecular Biology Organization
  9. International Human Frontier Science Program Organization
  10. National Institutes of Health [R01 MH073156]
  11. Canadian Institute of Health Research [MOP 209314]

向作者/读者索取更多资源

The active zone (AZ) of chemical synapses is a specialized area of the presynaptic bouton in which vesicles fuse with the plasma membrane and release neurotransmitters. Efficient signaling requires synaptic vesicles (SVs) to be recruited, primed, and retained at the AZ, in close proximity to voltage-dependent calcium channels that are activated during presynaptic depolarization. The electron-dense specializations at the AZ might provide a molecular platform for the spatial coordination of these different processes. To investigate this hypothesis, we examined high-resolution three-dimensional models of Caenorhabditis elegans cholinergic neuromuscular junctions generated by electron tomography. First, we found that SVs are interconnected within the bouton by filaments similar to those described in vertebrates. Second, we resolved the three-dimensional structure of the dense projection centered in the AZ. The dense projection is a more complex structure than previously anticipated, with filaments radiating from a core structure that directly contact SVs in the interior of the bouton as well as SVs docked at the plasma membrane. Third, we investigated the functional correlate of these contacts by analyzing mutants disrupting two key AZ proteins: UNC-10/RIM and SYD-2/liprin. In both mutants, the number of contacts between SVs and the dense projection was significantly reduced. Similar to unc-10 mutants, the dependence of SV fusion on extracellular calcium concentration was exacerbated in syd-2 mutants when compared with the wild type. Hence, we propose that the dense projection ensures proper coupling of primed vesicles with calcium signaling by retaining them at the AZ via UNC-10/RIM and SYD-2/liprin-dependent mechanisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据