4.5 Article

Structural and electronic properties of endohedral doped SWCNTs: A DFT study

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.physe.2014.08.009

关键词

Density functional theory; Endohedral doping; Carbon nanotubes; Electronic structure

向作者/读者索取更多资源

The structural and electronic properties of semiconductors (Si and Ge) and metal (Au and Tl) atoms doped armchair (n, n) and zigzag (n, 0); n=4-6, single wall carbon nanotubes (SWCNTs) have been studied using an ab-initio method. We have considered a linear chain of dopant atoms inside CNTs of different diameters but of same length. We have studied variation of B.E./atom, ionization potential, electron affinity and HOMO-LUMO gap of doped armchair and zigzag CNTs with diameter and dopant type. For armchair undoped CNTs, the B.E./atom increases with the increase in diameter of the tubes. For Si, Ge and Tl doped CNTs, B.E./atom is maximum for (6, 6) CNT whereas for Au doped CNTs, it is maximum for (5, 5) CNTs. For pure CNTs, IP decreases slightly with increasing diameter whereas EA increases with diameter. The study of HOMO-LUMO gap shows that on doping metallic character of the armchair CNTs increases whereas for zigzag CNTs semiconducting character increases. In case of zigzag tubes only Si doped (5, 0), (6, 0) and Ge doped (6, 0) CNTs are stable. The IP and EA for doped zigzag CNTs remain almost independent of tube diameter and dopant type whereas for doped armchair CNTs, maximum IP and EA are observed for (5, 5) tube for all dopants. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据