4.7 Article

Influence of Cholesterol on Catecholamine Release from the Fusion Pore of Large Dense Core Chromaffin Granules

期刊

JOURNAL OF NEUROSCIENCE
卷 30, 期 11, 页码 3904-3911

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.4000-09.2010

关键词

-

资金

  1. Canadian Institute of Health Research

向作者/读者索取更多资源

Changes in cellular cholesterol can affect exocytosis, but the influence of cholesterol in fusion pore kinetics is unclear. Using carbon fiber amperometry, we monitored quantal catecholamine release from rat chromaffin cells. To bypass any possible effect of cholesterol perturbation on ion channels or the colocalization of voltage-gated Ca2+ channels with sites of exocytosis, exocytosis was stimulated via uniform elevation of cytosolic [Ca2+] (with whole-cell dialysis of a Ca2+-buffered solution). Under this condition, alterations of cellular cholesterol affected neither the mean number of amperometric events triggered per cell nor their quantal size and the kinetics of their main spike (which reflects the rapid release during and after rapid fusion pore dilation). In contrast, the reduction of cellular cholesterol shortened the prespike foot signals (which reflect the leakage of catecholamine via a semi-stable fusion pore) and reduced the proportion of stand-alone foot signals (which reflect the release via a flickering fusion pore that may close before it dilates significantly), whereas an oversupply of cholesterol had opposite effects. Acute extraction of cholesterol from the cytosol (via whole-cell dialysis of a cholesterol extractor) also shortened the prespike foot signals and reduced the proportion of stand-alone foot signals, but acute extracellular application of cholesterol extractor or soluble cholesterol had no effect. Our data raise the possibility that cholesterol molecules, particularly those in the cytoplasmic leaflet, helps to constrain the narrow waistline of a semi-stable fusion pore while it is flickering or before it starts to dilate rapidly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据