4.7 Article

Sleep Deprivation Triggers Inducible Nitric Oxide-Dependent Nitric Oxide Production in Wake-Active Basal Forebrain Neurons

期刊

JOURNAL OF NEUROSCIENCE
卷 30, 期 40, 页码 13254-13264

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.0014-10.2010

关键词

-

资金

  1. Department of Veterans Affairs Medical Research Service
  2. Sleep Research Society Foundation
  3. National Institute of Mental Health [NIMH39683]

向作者/读者索取更多资源

Sleep loss negatively impacts performance, mood, memory, and immune function, but the homeostatic factors that impel sleep after sleep loss are imperfectly understood. Pharmacological studies had implicated the basal forebrain (BF) inducible nitric oxide (NO) synthase (iNOS)-dependent NO as a key homeostatic factor, but its cellular source was obscure. To obtain direct evidence about the cellular source of iNOS-generated NO during sleep deprivation (SD), we used intracerebroventricular perfusion in rats of the cell membrane-permeable dye diaminofluorescein-2/diacetate (DAF-2/DA) that, once intracellular, bound NO and fluoresced. To circumvent the effects of neuronal NOS (nNOS), DAF-2/DA was perfused in the presence of an nNOS inhibitor. SD led to DAF-positive fluorescence only in the BF neurons, not glia. SD increased expression of iNOS, which colocalized with NO in neurons and, more specifically, in prolonged wakefulness-active neurons labeled by Fos. SD-induced iNOS expression in wakefulness-active neurons positively correlated with sleep pressure, as measured by the number of attempts to enter sleep. Importantly, SD did not induce Fos or iNOS in stress-responsive central amygdala and paraventricular hypothalamic neurons, nor did SD elevate corticosterone, suggesting that the SD protocol did not provoke iNOS expression through stress. We conclude that iNOS-produced neuronal NO is an important homeostatic factor promoting recovery sleep after SD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据