4.7 Article

Dynamic Range Adaptation to Sound Level Statistics in the Auditory Nerve

期刊

JOURNAL OF NEUROSCIENCE
卷 29, 期 44, 页码 13797-13808

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.5610-08.2009

关键词

-

资金

  1. National Institutes of Health [RO1 DC002258, P30 DC005209]
  2. Royal Society Dorothy Hodgkin Fellowship

向作者/读者索取更多资源

The auditory system operates over a vast range of sound pressure levels (100-120 dB) with nearly constant discrimination ability across most of the range, well exceeding the dynamic range of most auditory neurons (20-40 dB). Dean et al. (2005) have reported that the dynamic range of midbrain auditory neurons adapts to the distribution of sound levels in a continuous, dynamic stimulus by shifting toward the most frequently occurring level. Here, we show that dynamic range adaptation, distinct from classic firing rate adaptation, also occurs in primary auditory neurons in anesthetized cats for tone and noise stimuli. Specifically, the range of sound levels over which firing rates of auditory nerve (AN) fibers grows rapidly with level shifts nearly linearly with the most probable levels in a dynamic sound stimulus. This dynamic range adaptation was observed for fibers with all characteristic frequencies and spontaneous discharge rates. As in the midbrain, dynamic range adaptation improved the precision of level coding by the AN fiber population for the prevailing sound levels in the stimulus. However, dynamic range adaptation in the AN was weaker than in the midbrain and not sufficient (0.25 dB/dB, on average, for broadband noise) to prevent a significant degradation of the precision of level coding by the AN population above 60 dB SPL. These findings suggest that adaptive processing of sound levels first occurs in the auditory periphery and is enhanced along the auditory pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据