4.7 Article

Neuromodulation at Single Presynaptic Boutons of Cerebellar Parallel Fibers Is Determined by Bouton Size and Basal Action Potential-Evoked Ca Transient Amplitude

期刊

JOURNAL OF NEUROSCIENCE
卷 29, 期 49, 页码 15586-15594

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.3793-09.2009

关键词

-

资金

  1. National Institutes of Health [MH51106]
  2. Develbiss Foundation

向作者/读者索取更多资源

Most presynaptic terminals in the brain contain G-protein-coupled receptors that function to reduce action potential-evoked neurotransmitter release. These neuromodulatory receptors, including those for glutamate, GABA, endocannabinoids, and adenosine, exert a substantial portion of their effect by reducing evoked presynaptic Ca2+ transients. Manyaxons form synapses with multiple postsynaptic neurons, but it is unclear whether presynaptic attenuation in these synapses is homogeneous, as suggested by population-level Ca2+ imaging. We loaded Ca2+-sensitive dyes into cerebellar parallel fiber axons and imaged action potential-evoked Ca2+ transients in individual presynaptic boutons with application of three different neuromodulators and found that adjacent boutons on the same axon showed striking heterogeneity in their strength of attenuation. Moreover, attenuation was predicted by bouton size or basal Ca2+ response: smaller boutons were more sensitive to adenosine A1 agonist but less sensitive to CB1 agonist, while boutons with high basal action potential-evoked Ca2+ transient amplitude were more sensitive to mGluR4 agonist. These results suggest that boutons within brief segment of a single parallel fiber axon can have different sensitivities toward neuromodulators and may have different capacities for both short-term and long-term plasticities.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据