4.7 Article

Kalirin-7 is an essential component of both shaft and spine excitatory synapses in hippocampal interneurons

期刊

JOURNAL OF NEUROSCIENCE
卷 28, 期 3, 页码 711-724

出版社

SOC NEUROSCIENCE
DOI: 10.1523/JNEUROSCI.5283-07.2008

关键词

dendrite; dendritic spine; synaptogenesis; Rho GEF; PSD-95; GABA; dendritic growth

资金

  1. NIDA NIH HHS [DA-015464, R01 DA015464-04, R01 DA015464] Funding Source: Medline

向作者/读者索取更多资源

Kalirin, a multifunctional Rho GDP/GTP exchange factor, plays a vital role in cytoskeletal organization, affecting process initiation and outgrowth in neurons. Through alternative splicing, the Kalirin gene generates multiple functionally distinct proteins. Kalirin-7 (Kal7) is the most prevalent isoform in the adult rat hippocampus; it terminates with a postsynaptic density-95 (PSD-95)/Discs large/zona occludens-1 (PDZ) binding motif, is localized to the postsynaptic density, interacts with PSD-95, and causes the formation of dendritic spines when overexpressed in pyramidal neurons. Levels of Kal7 are low in the dendrites of hippocampal aspiny interneurons. In these interneurons, Kal7 is localized to the postsynaptic side of excitatory synapses onto dendritic shafts, overlapping clusters of PSD-95 and NMDA receptor subunit NR1. Selectively decreasing levels of Kal7 decreases the density of PSD-95-positive, bassoon-positive clusters along the dendritic shaft of hippocampal interneurons. Overexpression of Kal7 increases dendritic branching, inducing formation of spine-like structures along the dendrites and on the soma of normally aspiny hippocampal interneurons. Essentially all of the spine-like structures formed in response to Kal7 are apposed to vesicular glutamate transporter 1-positive, bassoon-positive presynaptic endings; GAD-positive, vesicular GABA transporter-positive inhibitory endings are unaffected. Almost every Kal7-positive dendritic cluster contains PSD-95 along with NMDA (NR1) and AMPA (GluR1 and GluR2) receptor subunits. Kal7-induced formation of spine-like structures requires its PDZ binding motif, and interruption of interactions between the PDZ binding motif and its interactors decreases Kal7-induced formation of spine-like structures. Kal7 thus joins Shank3 and GluR2 as molecules with a level of expression at excitatory synapses that titrates the number of dendritic spines.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据