4.5 Article Proceedings Paper

Exploring intertwined orders in cuprate superconductors

期刊

PHYSICA B-CONDENSED MATTER
卷 460, 期 -, 页码 136-140

出版社

ELSEVIER
DOI: 10.1016/j.physb.2014.11.056

关键词

High-temperature superconductors; Copper oxides; Stripes; Pair density wave

资金

  1. Office of Basic Energy Sciences, Division of Materials Science and Engineering, U.S. Department of Energy [DE-AC02-98CH10886]
  2. National Science Foundation [NSF PHY11-25915]

向作者/读者索取更多资源

The concept of intertwined orders has been introduced to describe the cooperative relationship between antiferromagnetic spin correlations and electron (or hole) pair correlations that develop in copper-oxide superconductors. This contrasts with systems in which, for example, charge-density-wave (COW) order competes for Fermi surface area with superconductivity. La2-xBaxCuO4 with x=0.125 provides an example in which the ordering of spin stripes coincides with the onset of two-dimensional superconducting correlations. The apparent frustration of the interlayer Josephson coupling has motivated the concept of the pair-density-wave superconductor, a state that theoretical calculations show to be energetically competitive with the uniform d-wave superconductor. Even at x=0.095, where there is robust superconductivity below 32 K in zero field, the coexistence of strong, low-energy, incommensurate spin excitations implies a spatially modulated and intertwined pair wave function. Recent observations of COW order in YBa2Cu3O6+x and other cuprate families have raised interesting questions regarding the general role of charge modulations and the relation to superconductivity. While there are differences in the doping dependence of the modulation wave vectors in YBa2Cu3O6+x, and La2-xBaxCuO4, the maximum ordering strength is peaked at the hole concentration of 1/8 in both cases. There are also possible connections with the quantum oscillations that have been detected about the same hole concentration but at high magnetic fields. Resolving these relationships remains a research challenge. (C) 2014 Elsevier B.V. All rights reserved

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据