4.4 Article

Neuropeptide S: a novel regulator of pain-related amygdala plasticity and behaviors

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 110, 期 8, 页码 1765-1781

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00874.2012

关键词

amygdala; pain behavior; neuropeptide S; synaptic transmission

资金

  1. National Institute of Neurological Disorders and Stroke [NS-38261, NS-081121, NS-11255]

向作者/读者索取更多资源

Amygdala plasticity is an important contributor to the emotional-affective dimension of pain. Recently discovered neuropeptide S (NPS) has anxiolytic properties through actions in the amygdala. Behavioral data also suggest antinociceptive effects of centrally acting NPS, but site and mechanism of action remain to be determined. This is the first electrophysiological analysis of pain-related NPS effects in the brain. We combined whole cell patch-clamp recordings in brain slices and behavioral assays to test the hypothesis that NPS activates synaptic inhibition of amygdala output to suppress pain behavior in an arthritis pain model. Recordings of neurons in the laterocapsular division of the central nucleus (CeLC), which serves pain-related amygdala output functions, show that NPS inhibited the enhanced excitatory drive [monosynaptic excitatory postsynaptic currents (EPSCs)] from the basolateral amygdala (BLA) in the pain state. As shown by miniature EPSC analysis, the inhibitory effect of NPS did not involve direct postsynaptic action on CeLC neurons but rather a presynaptic, action potential-dependent network mechanism. Indeed, NPS increased external capsule (EC)-driven synaptic inhibition of CeLC neurons through PKA-dependent facilitatory postsynaptic action on a cluster of inhibitory intercalated (ITC) cells. NPS had no effect on BLA neurons. High-frequency stimulation (HFS) of excitatory EC inputs to ITC cells also inhibited synaptic activation of CeLC neurons, providing further evidence that ITC activation can control amygdala output. The cellular mechanisms by which EC-driven synaptic inhibition controls CeLC output remain to be determined. Administration of NPS into ITC, but not CeLC, also inhibited vocalizations and anxiety-like behavior in arthritic rats. A selective NPS receptor antagonist ([D-Cys(tBu)(5)]NPS) blocked electrophysiological and behavioral effects of NPS. Thus NPS is a novel tool to control amygdala output and pain-related affective behaviors through a direct action on inhibitory ITC cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据