4.4 Article

Spectral reconstruction of phase response curves reveals the synchronization properties of mouse globus pallidus neurons

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 110, 期 10, 页码 2497-2506

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00177.2013

关键词

phase coupling; biophysical modeling; 555 Timer; perforated patch; basal ganglia; Fourier transform; integrate-and-fire neuron

资金

  1. National Institute of Neurological Disorders and Stroke [P50-NS-047085]
  2. IDP Foundation
  3. CHDI

向作者/读者索取更多资源

The propensity of a neuron to synchronize is captured by its infinitesimal phase response curve (iPRC). Determining whether an iPRC is biphasic, meaning that small depolarizing perturbations can actually delay the next spike, if delivered at appropriate phases, is a daunting experimental task because negative lobes in the iPRC (unlike positive ones) tend to be small and may be occluded by the normal discharge variability of a neuron. To circumvent this problem, iPRCs are commonly derived from numerical models of neurons. Here, we propose a novel and natural method to estimate the iPRC by direct estimation of its spectral modes. First, we show analytically that the spectral modes of the iPRC of an arbitrary oscillator are readily measured by applying weak harmonic perturbations. Next, applying this methodology to biophysical neuronal models, we show that a low-dimensional spectral reconstruction is sufficient to capture the structure of the iPRC. This structure was preserved reasonably well even with added physiological scale jitter in the neuronal models. To validate the methodology empirically, we applied it first to a low-noise electronic oscillator with a known design and then to cortical pyramidal neurons, recorded in whole cell configuration, that are known to possess a monophasic iPRC. Finally, using the methodology in conjunction with perforated-patch recordings from pallidal neurons, we show, in contrast to recent modeling studies, that these neurons have biphasic somatic iPRCs. Biphasic iPRCs would cause lateral somatically targeted pallidal inhibition to desynchronize pallidal neurons, providing a plausible explanation for their lack of synchrony in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据