4.6 Article

An efficient numerical method for simulating multiphase flows using a diffuse interface model

期刊

出版社

ELSEVIER
DOI: 10.1016/j.physa.2014.12.027

关键词

Multiphase flows; Continuum surface force; Surface tension and buoyancy effects; Diffuse interface model; Navier-Stokes equations; Lagrange multiplier

资金

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Education [2009-0093827]

向作者/读者索取更多资源

This paper presents a new diffuse interface model for multiphase incompressible immiscible fluid flows with surface tension and buoyancy effects. In the new model, we employ a new chemical potential that can eliminate spurious phases at binary interfaces, and consider a phase-dependent variable mobility to investigate the effect of the mobility on the fluid dynamics. We also significantly improve the computational efficiency of the numerical algorithm by adapting the recently developed scheme for the multiphase-field equation. To illustrate the robustness and accuracy of the diffuse interface model for surface tension- and buoyancy-dominant multi-component fluid flows, we perform numerical experiments, such as equilibrium phase-field profiles, the deformation of drops in shear flow, a pressure field distribution, the efficiency of the proposed scheme, a buoyancy-driven bubble in ambient fluids, and the mixing of a six-component mixture in a gravitational field. The numerical result obtained by the present model and solution algorithm is in good agreement with the analytical solution and, furthermore, we not only remove the spurious phase-field profiles, but also improve the computational efficiency of the numerical solver. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据