4.4 Article

Central Gustatory Neurons Integrate Taste Quality Information From Four Appendages in the Moth Heliothis virescens

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 103, 期 6, 页码 2965-2981

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.00985.2009

关键词

-

资金

  1. Norwegian University of Science and Technology
  2. Royal Norwegian Society of Sciences and Letters
  3. Norwegian Research Council

向作者/读者索取更多资源

Discrimination between edible and noxious food, crucial for animal survival, is based on separate gustatory receptors for phagostimulants and deterrents. In the moth Heliothis virescens, gustatory receptor neurons (GRNs) tuned to phagostimulants like sucrose and deterrents like quinine, respectively, have indicated a labeled line mechanism for mediating appetitive and aversive information to the CNS. In the present study, we have investigated the central gustatory neurons (CGNs) in this moth as an approach to understand how gustatory information is coded in the CNS. Intracellular recordings from CGNs in the suboesophageal ganglion (SOG) combined with fluorescent staining revealed a large diversity of CGN types responding to sucrose, quinine, water, and mechanosensory stimuli applied to the antennae, the proboscis, and the right tarsus. The CGNs responded with varying tuning breadth to tastants applied to more than one appendage. This integration of information across stimuli and appendages, contradict a simple labeled line mechanism in the CNS for coding identity and location of taste stimuli. Instead the distinct pattern of activity found in an ensemble of CGNs, suggests a population coding mechanism. Staining revealed that the majority of the CGNs were confined locally within the SOG/tritocerebrum, whereas others projected to the deutocerebrum, protocerebrum, frontal ganglion, and thoracic ganglia. Some CGNs were reconstructed and registered into the H. virescens standard brain atlas, showing dendritic overlap with the previously described GRN projections. In general, the physiology and morphology of the CGNs suggested multifunctional properties, where a single CGN might belong to several networks executing different functions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据