4.7 Article

Reduction of lipoxidative load by secretory phospholipase A2 inhibition protects against neurovascular injury following experimental stroke in rat

期刊

JOURNAL OF NEUROINFLAMMATION
卷 6, 期 -, 页码 -

出版社

BIOMED CENTRAL LTD
DOI: 10.1186/1742-2094-6-21

关键词

-

资金

  1. NIH [NS-22576, NS-34741, NS37766]
  2. State of South Carolina Spinal Cord Injury Research Fund Board [SCIRF 0406, SCIRF 0506]
  3. National Center for Research Resources [C06 RR018823, C06 RR015455]

向作者/读者索取更多资源

Background: In animal models, ischemia reperfusion (IR) injury triggers membrane lipid degradation and accumulation of lipoxidative exacerbations in neurovascular unit, leading to blood brain barrier (BBB) damage and neurologic deficits. In this study, we investigated whether impeding membrane lipid breakdown by inhibiting secretory phospholipase A2 (sPLA2) activity reduces BBB leakage, leading to neuroprotection and functional recovery. Methods: Focal cerebral IR injury was induced by middle cerebral artery occlusion (MCAO) in adult male rats. A sPLA2 inhibitor, 7,7-dimethyleicosadienoic acid (DEDA), was administered following IR injury. DEDA-treated animals were compared with vehicle-treated in terms of BBB leakage, edema, infarct volume, and neurological deficit. Membrane lipid degradation and the expression/activity of sPLA2 were also assessed. The role of one of the sPLA2 products, arachidonic acid (AA), on the morphology of the differentiated neuronal cell PC12 was examined by light microscopy. Results: Treatment with DEDA after IR injury not only reduced BBB leakage but also decreased infarct volume and improved neurologic function. The treatment attenuated both the activity of sPLA2 and the levels of sPLA2-derived oxidized products. The metabolites of lipid oxidation/peroxidation, including the protein carbonyl, were reduced as well. The treatment also restored the levels of glutathione, indicating attenuation of oxidative stress. In vitro treatment of PC12 cells with DEDA did not restore the AA-mediated inhibition of neurite formation and the levels of glutathione, indicating that effect of DEDA is up stream to AA release. Conclusion: sPLA2-derived oxidative products contribute to significant neurovascular damage, and treatment with sPLA2 inhibitor DEDA ameliorates secondary injury by reducing exacerbations from lipoxidative stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据