4.5 Review

Real-time imaging of plasma membrane deformations reveals pre-fusion membrane curvature changes and a role for dynamin in the regulation of fusion pore expansion

期刊

JOURNAL OF NEUROCHEMISTRY
卷 122, 期 4, 页码 661-671

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1471-4159.2012.07816.x

关键词

chromaffin cells; dynamin; exocytosis; granule; polarization; TIRFM

资金

  1. NIH [R01-NS38129, R56-NS38129, R21-NS073686, T32-DA007268, F32-GM086169]

向作者/读者索取更多资源

J. Neurochem. (2012) 122, 661671. Abstract Assays for real-time investigation of exocytosis typically measure what is released from the granule. From this, inferences are made about the dynamics of membrane remodeling as fusion progresses from start to finish. We have recently undertaken a different approach to investigate the fusion process, by focusing not primarily on the granule, but rather its partner in exocytosis the plasma membrane. We have been guided by the idea that biochemical interactions between the granule and plasma membranes before and during fusion, cause changes in membrane conformation. To enable study of membrane conformation, a novel imaging technique was developed combining polarized excitation of an oriented membrane probe 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (diI) with total internal reflection fluorescence microscopy (pTIRFM). Because this technique measures changes in membrane conformation (or deformations) directly, its usefulness persists even after granule cargo reporter (catecholamine, or protein), is no longer present. In this mini-review, we first summarize the workings of pTIRFM. We then discuss the application of the technique to investigate deformations in the membrane preceding fusion, and later, during fusion pore expansion. Finally, we discuss how expansion of the fusion pore may be regulated by the GTPase activity of dynamin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据