4.5 Article

Increased intranuclear matrix metalloproteinase activity in neurons interferes with oxidative DNA repair in focal cerebral ischemia

期刊

JOURNAL OF NEUROCHEMISTRY
卷 112, 期 1, 页码 134-149

出版社

WILEY-BLACKWELL PUBLISHING, INC
DOI: 10.1111/j.1471-4159.2009.06433.x

关键词

nuclear gelatinolysis; oxidative DNA damage; poly-ADP-ribose polymerase-1; stroke; X-ray cross-complementary factor 1

资金

  1. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [R01NS045847] Funding Source: NIH RePORTER
  2. NINDS NIH HHS [5R01 NS04547, R01 NS045847] Funding Source: Medline

向作者/读者索取更多资源

Increased matrix metalloproteinase (MMP) activity is implicated in proteolysis of extracellular matrix in ischemic stroke. We recently observed intranuclear MMP activity in ischemic brain neurons at early reperfusion, suggesting a possible role in nuclear matrix proteolysis. Nuclear proteins, poly-ADPribose polymerase-1 (PARP-1) and X-ray cross-complementary factor 1 (XRCC1), as well as DNA repair enzymes, are important in DNA fragmentation and cell apoptosis. We hypothesized that intranuclear MMP activity facilitates oxidative injury in neurons during early ischemic insult by cleaving PARP-1 and XRCC1, interfering with DNA repair. We induced a 90-min middle cerebral artery occlusion in rats. Increase activity of MMP-2 and -9, detected in the ischemic neuronal nuclei at 3 h, was associated with DNA fragmentation at 24 and 48 h reperfusion. The intranuclear MMPs cleaved PARP-1. Treatment of the rats with a broad-spectrum MMP inhibitor, BB1101, significantly attenuated ischemia-induced PARP-1 cleavage, increasing its activity. Degradation of XRCC1 caused by ischemic insult in rat brain was also significantly attenuated by BB1101. We found elevation of oxidized DNA, apurinic/apyrimidinic sites, and 8-hydroxy-2'-deoxyguanosine, in ischemic brain cells at 3 h reperfusion. BB1101 markedly attenuated the early increase of oxidized DNA. Using tissue from stroke patients, we found increased intranuclear MMP expression. Our data suggest that intranuclear MMP activity cleaves PARP-1 and XRCC1, interfering with oxidative DNA repair. This novel role for MMPs could contribute to neuronal apoptosis in ischemic injuries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据