4.5 Article

Excitotoxic damage, disrupted energy metabolism, and oxidative stress in the rat brain:: antioxidant and neuroprotective effects of L-carnitine

期刊

JOURNAL OF NEUROCHEMISTRY
卷 105, 期 3, 页码 677-689

出版社

WILEY
DOI: 10.1111/j.1471-4159.2007.05174.x

关键词

3-nitropropionic acid; energy metabolism deficit; excitotoxicity; L-carnitine; neuroprotection; quinolinic acid

向作者/读者索取更多资源

Excitotoxicity and disrupted energy metabolism are major events leading to nerve cell death in neurodegenerative disorders. These cooperative pathways share one common aspect: triggering of oxidative stress by free radical formation. In this work, we evaluated the effects of the antioxidant and energy precursor, levocarnitine (L-CAR), on the oxidative damage and the behavioral, morphological, and neurochemical alterations produced in nerve tissue by the excitotoxin and free radical precursor, quinolinic acid (2,3-pyrindin dicarboxylic acid; QUIN), and the mitochondrial toxin, 3-nitropropionic acid (3-NP). Oxidative damage was assessed by the estimation of reactive oxygen species formation, lipid peroxidation, and mitochondrial dysfunction in synaptosomal fractions. Behavioral, morphological, and neurochemical alterations were evaluated as markers of neurotoxicity in animals systemically administered with L-CAR, chronically injected with 3-NP and/or intrastriatally infused with QUIN. At micromolar concentrations, L-CAR reduced the three markers of oxidative stress stimulated by both toxins alone or in combination. L-CAR also prevented the rotation behavior evoked by QUIN and the hypokinetic pattern induced by 3-NP in rats. Morphological alterations produced by both toxins (increased striatal glial fibrillary acidic protein-immunoreactivity for QUIN and enhanced neuronal damage in different brain regions for 3-NP) were reduced by L-CAR. In addition, L-CAR prevented the synergistic action of 3-NP and QUIN to increase motor asymmetry and depleted striatal GABA levels. Our results suggest that the protective properties of L-CAR in the neurotoxic models tested are mostly mediated by its characteristics as an antioxidant agent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据