4.3 Article

Nuclear translocation of anamorsin during drug-induced dopaminergic neurodegeneration in culture and in rat brain

期刊

JOURNAL OF NEURAL TRANSMISSION
卷 118, 期 3, 页码 433-444

出版社

SPRINGER WIEN
DOI: 10.1007/s00702-010-0490-8

关键词

Anamorsin; 6-Hydroxydopamine; Trace metal elements; Reactive oxygen species; Nuclear translocation; Neurodegeneration

资金

  1. Ministry of Health and Welfare [A090063]
  2. Brain Research Center, World Class University (WCU) [R33-2208-10014]
  3. KOSEF through SRC [R11-2008-036]

向作者/读者索取更多资源

Anamorsin, also called cytokine-induced apoptosis inhibitor 1 (CIAPIN1), was recently identified to confer resistance to apoptosis induced by growth factor deprivation and to be indispensible for hematopoiesis. Recently, it was demonstrated that anamorsin is also widely distributed in both fetal and adult tissues. In this study, we evaluated the tissue distribution of anamorsin in the central nervous system (CNS) during development. In situ hybridization and immunoblot analyses revealed that anamorsin mRNA and protein were both highly and widely expressed in various regions of the CNS, including the cerebral cortex, hippocampus, midbrain, cerebellum, medulla, and spinal cord. Based on these findings, we examined its cellular localization during drug-induced neurodegeneration in MN9D dopaminergic cells. Both immunocytochemical localization and immunoblot analyses indicated that cytosolic anamorsin was translocated into the nucleus in a time-dependent manner following treatment with a reactive oxygen species (ROS)-inducing drug, 6-hydroxydopamine (6-OHDA). Treatment of cells with the apoptosis-inducing reagent, staurosporine, did not appear to cause translocation of anamorsin into the nucleus. When cells were treated with the nuclear export inhibitor, Leptomycin B, alone or with 6-OHDA, nuclear anamorsin levels increased, indicating that nuclear influx and efflux of anamorsin are regulated by 6-OHDA treatment. In rat brain injected with 6-OHDA, nuclear translocation of anamorsin was identified in certain tyrosine hydroxylase (TH)-positive neurons as well as TH-negative cells. Furthermore, treatment of MN9D cells with hydrogen peroxide or ROS-inducing trace metals caused nuclear translocation of anamorsin. Taken together, our data indicate that nuclear translocation of anamorsin is a ROS-dependent event and may participate in the regulation of transcription of critical molecules during dopaminergic neurodegeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据