4.1 Article

Symmetric and antisymmetric resonances in a pair of metal-dielectric nanoshells: tunability and closed-form formulas

期刊

JOURNAL OF NANOPHOTONICS
卷 4, 期 -, 页码 -

出版社

SPIE-SOC PHOTOPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.3430112

关键词

nanoshells; plasmonics; metamaterials; scattering

向作者/读者索取更多资源

Resonances of symmetric and antisymmetric polarization states in tightly coupled nanoshell particles made of either a metallic core and a dielectric shell or, vice versa, a dielectric core and a metallic shell were analyzed at optical frequencies. The investigation was performed by using the single dipole approximation (SDA) with all the dynamical retarded field terms included. Furthermore, analytic formulas for the four possible resonances were derived for the first time by retaining only the static (non-retarded) term in the dipolar field expression. The image principle was used to distinguish a priori between symmetric and antisymmetric modes and for full-wave simulations performed to confirm the identification of resonances achieved by the SDA. It was observed that the resonance frequencies of a pair of nanoshells can be tuned over a wide range of wavelength/frequencies by varying the relative dimensions of the core and shell. This makes this kind of particle pairs suited very well to be adopted either as constituents of metamaterials or to enhance local fields when operating frequencies range from the visible to the infrared spectral regions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据