4.4 Article

Characterization of carbon nano-onions for heavy metal ion remediation

期刊

JOURNAL OF NANOPARTICLE RESEARCH
卷 14, 期 9, 页码 -

出版社

SPRINGER
DOI: 10.1007/s11051-012-1087-y

关键词

Carbon nano-onions; Characterization; Sorption; Heavy metal ion; Mobility

资金

  1. US EPA through the National Research Council summer faculty fellowship
  2. EPA student summer internship
  3. National Science Foundation Award [CBET-1133528]

向作者/读者索取更多资源

Carbonaceous nanomaterials, such as fullerene C-60, carbon nanotubes, and their functionalized derivatives have been demonstrated to possess high sorption capacity for organic and heavy metal contaminants, indicating a potential for remediation application. The actual application of these nanomaterials, however, is often hindered by the high cost of materials and the limited understanding of their mobility in porous media. In this work, carbon nano-onions (CNOs), a relatively new addition to the carbonaceous nanomaterials, were synthesized in a cost-effective way using a laser-assisted combustion synthesis process, and carefully characterized for their potential remediation application. Surface oxidized CNOs possessed 10 times higher sorption capacity than C-60 for heavy metal ion contaminants including Pb2+,Cu2+, Cd2+, Ni2+, and Zn2+. CNOs aqueous suspension can be very stable in NaCl solution at ionic strength up to 30 mM and CaCl2 solution at ionic strength up to 4 mM CaCl2 when pH ranged from 5 to 9, which are consistent with environmentally relevant conditions. Interactions of CNOs with iron oxide and silica surfaces under favorable condition were found to be electrostatic in origin. Mobility of CNOs in quartz sands was controlled by electrolyte type and concentration. Approximately 4.4, 25.1, and 92.5 % of injected CNO mass were retained in the sand column in ultrapure water, 1 mM NaCl, and 1 mM CaCl2 solutions, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据