4.4 Article

Fabrication of catalytically active nanocrystalline samarium (Sm)-doped cerium oxide (CeO2) thin films using electron beam evaporation

期刊

JOURNAL OF NANOPARTICLE RESEARCH
卷 14, 期 8, 页码 -

出版社

SPRINGER
DOI: 10.1007/s11051-012-1040-0

关键词

Samarium (Sm)-doped CeO2; Nanoparticles; Thin films; ITO; Glass; Catalyst

向作者/读者索取更多资源

Samarium(Sm)-doped ceriumoxide (CeO2) thin films were fabricated using electron beam evaporation technique. The synthesized films were deposited either on glass or ITO substrates and studied their nature by annealing at different temperatures. The optical properties and other morphological studies were done by UV-Vis, XRD, XPS, SEM, EDS, and FT-IR analysis. XRD and XPS analysis clearly confirm the presence of Sm in the ceria site. From the SEM study, it was found that after annealing at high temperature (similar to 300 or 500 degrees C), the particles size was reduced due to breakdown of large aggregates of particles which is also confirmed from UV-Vis, XPS, and XRD analyses. The FT-IR study proves the presence of -COO-, -OH, or ammonium group on the particles surface. The deposition of Sm-doped CeO2 nanomaterials was found more feasible on ITO substrate compared to that of glass substrate in terms of stability and depth of film thickness. The Sm-doped CeO2 nanomaterial acts as a re-usable catalyst for the reduction of organic dye molecules in the presence of NaBH4. The catalysis rate was compared by considering the electron transfer process during the reduction. The synthesized Sm-doped CeO2 thin films might find wide variety of applications in various emerging fields like solid oxide fuel cells (SOFCs), oxygen sensor or as catalyst in different types of organic and inorganic catalytic reactions. The fabrication process is very simple, straightforward, less time consuming, and cost effective.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据