4.2 Article

SnO2 Nanoparticle-Based Passive Capacitive Sensor for Ethylene Detection

期刊

JOURNAL OF NANOMATERIALS
卷 2012, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2012/145406

关键词

-

向作者/读者索取更多资源

A passive capacitor-based ethylene sensor using SnO2 nanoparticles is presented for the detection of ethylene gas. The nanoscale particle size (10 nm to 15 nm) and film thickness (1300 nm) of the sensing dielectric layer in the capacitor model aid in sensing ethylene at room temperature and eliminate the need for microhotplates used in existing bulk SnO2-resistive sensors. The SnO2-sensing layer is deposited using room temperature dip coating process on flexible polyimide substrates with copper as the top and bottom plates of the capacitor. The capacitive sensor fabricated with SnO2 nanoparticles as the dielectric showed a total decrease in capacitance of 5 pF when ethylene gas concentration was increased from 0 to 100 ppm. A 7 pF decrease in capacitance was achieved by introducing a 10 nm layer of platinum (Pt) and palladium (Pd) alloy deposited on the SnO2 layer. This also improved the response time by 40%, recovery time by 28%, and selectivity of the sensor to ethylene mixed in a CO2 gas environment by 66%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据