4.0 Article

Lineage-based primary muscle fiber type diversification independent of MEF2 and NFAT in chick embryos

期刊

JOURNAL OF MUSCLE RESEARCH AND CELL MOTILITY
卷 31, 期 5-6, 页码 369-381

出版社

SPRINGER
DOI: 10.1007/s10974-011-9242-0

关键词

Myogenesis; Avian; Embryonic; Myoblast; Fiber type; Lineage; Promoter

资金

  1. National Institutes of Health [RO1-AR058043]

向作者/读者索取更多资源

Differences in primary avian skeletal muscle fiber types are based on myoblast cell lineages and independent of innervation. To understand the basis for this mode of myogenesis, embryonic myoblasts specifically committed to the formation of either fast or fast/slow muscle fiber types were isolated, characterized, and examined for their capacities to transcriptionally regulate the slow myosin heavy chain 2 (MyHC2) gene. Myogenic basic helix-loop-helix protein binding sites within the slow MyHC2 promoter were mutated and did not direct fast versus fast/slow muscle fiber type development. Using promoter analyses coupled with overexpression studies and transcriptional sensors, the roles of Nuclear Factor of Activated T cells (NFATc1), and MEF2A in regulation of the slow MyHC2 gene were determined. MEF2A activated the slow MyHC2 promoter in both fast and fast/slow primary muscle fibers. In contrast, NFATc1 repressed promoter activity. These results do not support the roles of MEF2 and NFAT as direct regulators of primary muscle fiber type differences. Rather, the results reflect intrinsic differences in the modes of regulation of the slow MyHC2 gene in primary muscle fiber types.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据