4.4 Article

Knocking Out DJ-1 Attenuates Astrocytes Neuroprotection Against 6-Hydroxydopamine Toxicity

期刊

JOURNAL OF MOLECULAR NEUROSCIENCE
卷 50, 期 3, 页码 542-550

出版社

HUMANA PRESS INC
DOI: 10.1007/s12031-013-9984-9

关键词

Parkinson's disease; DJ-1; 6-hydroxydopamine

资金

  1. Israel Science Foundation (ISF) [1690/09]
  2. UGH Pharma, Inc.

向作者/读者索取更多资源

Astrocytes are the most abundant glial cell type in the brain. Impairment in astrocyte functions can critically influence neuronal survival and leads to neurodegeneration. Parkinson's disease (PD) is a common neurodegenerative disorder, characterized by motor dysfunction that results from progressive neuronal loss. Astrocytic dysfunction was demonstrated in human samples and in experimental models of PD. Mutations in DJ-1 (PARK7) leading to loss of functional protein cause familial PD and enhance sensitivity to oxidative insults. Recently, an increase in DJ-1's expression was found in reactive astrocytes in various neurodegenerative disorders. Here we show that lack of DJ-1 attenuates astrocytes' ability to support neuronal cells, thereby leading to accelerated neuronal damage. DJ-1 knockout mice demonstrated increased vulnerability in vivo to 6-hydroxydopamine (6-OHDA) hemiparkinsonian PD model. Astrocytes isolated from DJ-1 knockout mice showed an inferior ability to protect human neuroblastoma cells against 6-OHDA insult both by co-culture and through their conditioned media, as compared to wild-type astrocytes. DJ-1 knockout astrocytes showed blunted ability to increase the expression of cellular protective mechanisms against oxidative stress mediated via Nrf-2 and HO-1 in response to exposure to 6-OHDA. These experiments demonstrated that lack of DJ-1 impairs astrocyte-mediated neuroprotection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据